NCERT Solutions For Class 10 Maths: Introduction to Trigonometry
October 12, 2025
EXERCISE 8.1
Question 1: In Δ ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine : (i) sin A, cos A (ii) sin C, cos C
Solution-
1.First, find the hypotenuse AC using the Pythagoras theorem. AC=AB2+BC2=242+72=576+49=625=25 cm.
(i) Ratios for ∠A:
1.sin A = hypotenuseside opposite to angle A=ACBC=257.
2.cos A = hypotenuseside adjacent to angle A=ACAB=2524.
(ii) Ratios for ∠C:
1.sin C = hypotenuseside opposite to angle C=ACAB=2524.
2.cos C = hypotenuseside adjacent to angle C=ACBC=257.
Question 2: In Fig. 8.13, find tan P – cot R.
Solution-
1.In ΔPQR, right-angled at Q, PQ = 12 cm and PR = 13 cm.
2.Find the side QR using the Pythagoras theorem: QR=PR2−PQ2=132−122=169−144=25=5 cm.
3.Calculate tan P: tanP=side adjacent to angle Pside opposite to angle P=PQQR=125.
4.Calculate cot R: cotR=side opposite to angle Rside adjacent to angle R=PQQR=125.
5.Determine tan P – cot R: tanP−cotR=125−125=0.
Question 3: If sinA=43, calculate cosA and tanA.
Solution-
1.Given sinA=43=HypotenuseOpposite Side. Let BC = 3k and AC = 4k.
2.Find the adjacent side AB using the Pythagoras theorem: AB=AC2−BC2=(4k)2−(3k)2=16k2−9k2=7k2=k7.
Question 4: Given 15 cot A = 8, find sinA and secA.
Solution-
1.Given cotA=158=Opposite Side (BC)Adjacent Side (AB). Let AB = 8k and BC = 15k.
2.Find the hypotenuse AC using the Pythagoras theorem: AC=AB2+BC2=(8k)2+(15k)2=64k2+225k2=289k2=17k.
Question 5: Given secθ=1213, calculate all other trigonometric ratios.
Solution-
1.Given secθ=1213=Adjacent SideHypotenuse. Let Hypotenuse = 13k and Adjacent Side = 12k.
2.Find the Opposite Side using the Pythagoras theorem:
Opposite Side =(13k)2−(12k)2=169k2−144k2=25k2=5k.
3.Calculate the other ratios:
1.cosθ=secθ1=1312.
2.sinθ=HypotenuseOpposite Side=13k5k=135.
3.tanθ=Adjacent SideOpposite Side=12k5k=125.
4.cosecθ=sinθ1=513.
5.cotθ=tanθ1=512.
Question 6: If ∠A and ∠B are acute angles such that cosA=cosB, then show that ∠A=∠B.
Solution-
1.Consider two right triangles, △ACB (right-angled at C) and △PRQ (right-angled at R), or consider a single triangle △ABC right-angled at C (since A and B are acute angles).
2.If cosA=cosB in △ABC (right-angled at C), then ABAC=ABBC.
3.This implies AC=BC.
4.In a triangle, the sides opposite to equal angles are equal. Since side AC is opposite to ∠B and side BC is opposite to ∠A, having AC=BC implies ∠A=∠B.
(Alternatively, using the similar triangle approach demonstrated in Example 2, if cosA=cosB, we can show that △ACB∼△BDA or use similar construction to prove the angles are equal).
Question 7: If cotθ=87, evaluate : (i) (1+cosθ)(1−cosθ)(1+sinθ)(1−sinθ) (ii) cot2θ
Solution-
(i) Evaluate (1+cosθ)(1−cosθ)(1+sinθ)(1−sinθ):
1.Using the algebraic identity (a+b)(a−b)=a2−b2, the expression simplifies to 1−cos2θ1−sin2θ.
2.Using the trigonometric identity sin2θ+cos2θ=1, we know 1−sin2θ=cos2θ and 1−cos2θ=sin2θ.
3.The expression becomes sin2θcos2θ. Since sinθcosθ=cotθ, this is equal to cot2θ.
4.Substitute the given value: cot2θ=(87)2=6449.
(ii) Evaluate cot2θ:
1.Given cotθ=87.
2.cot2θ=(87)2=6449.
Question 8: If 3 cot A = 4, check whether 1+tan2A1−tan2A=cos2A−sin2A or not.
Solution-
1.Given 3cotA=4, so cotA=34. Thus tanA=cotA1=43.
2.Assume a right triangle where Adjacent =4k and Opposite =3k. Hypotenuse =42+32=5k.
3.Calculate sinA=53 and cosA=54.
4.Evaluate the Left Hand Side (LHS): LHS=1+tan2A1−tan2A=1+(3/4)21−(3/4)2=1+9/161−9/16=25/167/16=257.
5.Evaluate the Right Hand Side (RHS): RHS=cos2A−sin2A=(54)2−(53)2=2516−259=257.
6.Since LHS = RHS (257=257), the given statement is true.
Question 9: In triangle ABC, right-angled at B, if tanA=31, find the value of: (i) sinAcosC+cosAsinC (ii) cosAcosC–sinAsinC
Solution-
1.Given tanA=31. We recognize this standard ratio corresponds to A=30∘.
2.Since ΔABC is right-angled at B (90∘), ∠C=180∘−90∘−30∘=60∘.
3.Using trigonometric ratio values for 30∘ and 60∘: sinA=sin30∘=1/2. cosA=cos30∘=3/2. sinC=sin60∘=3/2. cosC=cos60∘=1/2.
(ii) Calculate cosAcosC–sinAsinC:
1.(23)(21)−(21)(23)=43−43=0.
Question 10: In Δ PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sinP, cosP and tanP.
Solution-
1.In ΔPQR, by Pythagoras theorem, PQ2+QR2=PR2.
2.We are given PQ=5 cm and PR+QR=25 cm. Let PR=25−QR.
3.Substitute into the Pythagoras equation: 52+QR2=(25−QR)2. 25+QR2=625−50QR+QR2. 25=625−50QR. 50QR=600. QR=12 cm.
4.Find PR: PR=25−QR=25−12=13 cm.
5.Determine the trigonometric ratios for ∠P:
1.sin P = Hypotenuse (PR)Opposite Side (QR)=1312.
2.cos P = Hypotenuse (PR)Adjacent Side (PQ)=135.
3.tan P = Adjacent Side (PQ)Opposite Side (QR)=512.
Question 11: State whether the following are true or false. Justify your answer. (i) The value of tanA is always less than 1. (ii) secA=512 for some value of angle A. (iii) cosA is the abbreviation used for the cosecant of angle A. (iv) cotA is the product of cot and A. (v) sinθ=34 for some angle θ.
Solution-
(i) The value of tanA is always less than 1.
1.False. tanA is defined as the ratio of the side opposite to ∠A to the side adjacent to ∠A. This ratio can be greater than 1, equal to 1 (when A=45∘), or less than 1. For example, tan60∘=3≈1.732, which is greater than 1.
(ii) secA=512 for some value of angle A.
1.True. secA is the ratio of the hypotenuse to the adjacent side. Since the hypotenuse is the longest side in a right triangle, secA must always be greater than or equal to 1. Since 512=2.4, which is greater than 1, this value is possible.
(iii) cosA is the abbreviation used for the cosecant of angle A.
1.False. cosA is the abbreviation for the cosine of angle A. The abbreviation for cosecant of angle A is cosecA.
(iv) cotA is the product of cot and A.
1.False. cotA is used as an abbreviation for 'the cotangent of angle A'. 'cot' separated from A has no meaning, and it is not a product.
(v) sinθ=34 for some angle θ.
1.False. sinθ is the ratio of the side opposite to θ to the hypotenuse. Since the hypotenuse is the longest side, the side opposite can never be greater than the hypotenuse, meaning the value of sinθ can never exceed 1. Since 34≈1.33, this value is impossible.
EXERCISE 8.2
Question 1: Evaluate the following : (i) sin60∘cos30∘+sin30∘cos60∘ (ii) 2tan245∘+cos230∘–sin260∘ (iii) sec30∘+cosec30∘cos45∘ (iv) sec30∘+cos60∘+cot45∘sin30∘+tan45∘–cosec60∘ (v) sin230∘+cos230∘5cos260∘+4sec230∘–tan245∘
Solution-
(i) sin60∘cos30∘+sin30∘cos60∘:
1.Substitute values from Table 8.1: (23)(23)+(21)(21).
2.=43+41=44=1.
(ii) 2tan245∘+cos230∘–sin260∘:
1.Substitute values: 2(1)2+(23)2−(23)2.
2.=2+43−43=2.
(iii) sec30∘+cosec30∘cos45∘:
1.Substitute values: 2/3+21/2.
2.=32+231/2=21×2(1+3)3=22(1+3)3.
3.Rationalize the denominator by multiplying by (3−1)2(3−1)2: =222(3−1)6(3−1)=2(2)(2)18−6=832−6.
(v) sin230∘+cos230∘5cos260∘+4sec230∘–tan245∘:
1.The denominator is sin230∘+cos230∘. Using the identity sin2A+cos2A=1, the denominator equals 1.
2.Evaluate the numerator using values: 5(21)2+4(32)2−(1)2.
3.=5(41)+4(34)−1=45+316−1.
4.Find the common denominator (12): 1215+1264−1212=1215+64−12=1267.
Question 2: Choose the correct option and justify your choice : (i) 1+tan230∘2tan30∘ (A) sin60∘ (B) cos60∘ (C) tan60∘ (D) sin30∘
(ii) 1+tan245∘1−tan245∘ (A) tan90∘ (B) 1 (C) sin45∘ (D) 0
(iii) sin2A=2sinA is true when A= (A) 0∘ (B) 30∘ (C) 45∘ (D) 60∘
Solution-
(i) 1+tan230∘2tan30∘:
1.Substitute tan30∘=1/3: 1+(1/3)22(1/3)=1+1/32/3=4/32/3.
2.=32×43=436=233=23.
3.Since sin60∘=23, the correct option is (A) sin60∘.
(ii) 1+tan245∘1−tan245∘:
1.Substitute tan45∘=1: 1+(1)21−(1)2=1+11−1=20=0.
2.The correct option is (D) 0.
(iii) sin2A=2sinA is true when A=:
1.We check A=0∘. sin(2×0∘)=sin0∘=0.
2.2sin0∘=2(0)=0. Since 0=0, the condition is true for A=0∘.
3.The correct option is (A) 0∘.
(iv) 1−tan230∘2tan30∘:
1.Substitute tan30∘=1/3: 1−(1/3)22(1/3)=1−1/32/3=2/32/3.
2.=32×23=33=3.
3.Since tan60∘=3, the correct option is (C) tan60∘.
Question 3: If tan(A+B)=3 and tan(A–B)=31; 0∘<A+B≤90∘; A>B, find A and B.
Solution-
1.Given tan(A+B)=3. Since tan60∘=3, we have A+B=60∘ (1).
2.Given tan(A−B)=31. Since tan30∘=31, we have A−B=30∘ (2).
3.Add equations (1) and (2): (A+B)+(A−B)=60∘+30∘. 2A=90∘. A=45∘.
4.Substitute A=45∘ into equation (1): 45∘+B=60∘. B=15∘.
5.The values are A=45∘ and B=15∘.
Question 4: State whether the following are true or false. Justify your answer. (i) sin(A+B)=sinA+sinB. (ii) The value of sinθ increases as θ increases. (iii) The value of cosθ increases as θ increases. (iv) sinθ=cosθ for all values of θ. (v) cotA is not defined for A=0∘.
Solution-
(i) sin(A+B)=sinA+sinB.
1.False. Let A=60∘ and B=30∘. LHS=sin(60∘+30∘)=sin90∘=1. RHS=sin60∘+sin30∘=23+21=1.
(ii) The value of sinθ increases as θ increases.
1.True. As ∠A increases from 0∘ to 90∘, the value of sinA increases monotonically from 0 to 1.
(iii) The value of cosθ increases as θ increases.
1.False. As ∠A increases from 0∘ to 90∘, the value of cosA decreases monotonically from 1 to 0.
(iv) sinθ=cosθ for all values of θ.
1.False. This equality is true only when θ=45∘, where both sin45∘ and cos45∘ equal 21.
(v) cotA is not defined for A=0∘.
1.True. cot0∘ is defined as tan0∘1. Since tan0∘=0, cot0∘=01, which is not defined.
EXERCISE 8.3
Question 1: Express the trigonometric ratios sinA, secA and tanA in terms of cotA.
Solution-
1.Express sinA in terms of cotA:
We use the identity cosec2A=1+cot2A. cosecA=1+cot2A.
Since sinA=cosecA1, sinA=1+cot2A1.
2.Express tanA in terms of cotA:
By reciprocal relation, tanA=cotA1.
3.Express secA in terms of cotA:
We use the identity sec2A=1+tan2A. secA=1+tan2A.
Substitute tanA=1/cotA: secA=1+(cotA1)2=cot2Acot2A+1. secA=cotA1+cot2A.
Question 2: Write all the other trigonometric ratios of ∠A in terms of secA.
Solution-
1.Express cosA: cosA=secA1.
2.Express sinA:
Using the identity sin2A+cos2A=1, we have sinA=1−cos2A.
Substituting cosA=1/secA: sinA=1−(secA1)2=sec2Asec2A−1. sinA=secAsec2A−1.
3.Express tanA:
Using the identity 1+tan2A=sec2A, we have tanA=sec2A−1.
Solution-
(i) 9sec2A–9tan2A:
1.Factor out 9: 9(sec2A−tan2A).
2.Using the identity sec2A=1+tan2A, we have sec2A−tan2A=1.
3.Result: 9(1)=9.
4.The correct option is (B) 9.
(ii) (1+tanθ+secθ)(1+cotθ–cosecθ):
1.Convert to sinθ and cosθ:
LHS =(1+cosθsinθ+cosθ1)(1+sinθcosθ−sinθ1).
LHS =(cosθcosθ+sinθ+1)(sinθsinθ+cosθ−1).
2.Multiply numerators using (X+1)(X−1)=X2−1, where X=(sinθ+cosθ):
Numerator =(sinθ+cosθ)2−1=(sin2θ+cos2θ+2sinθcosθ)−1.
3.Using sin2θ+cos2θ=1, Numerator =(1+2sinθcosθ)−1=2sinθcosθ.
4.LHS =cosθsinθ2sinθcosθ=2.
5.The correct option is (C) 2.
(iii) (secA+tanA)(1–sinA):
1.Convert to sinA and cosA:
LHS =(cosA1+cosAsinA)(1–sinA).
LHS =cosA(1+sinA)(1–sinA)=cosA1−sin2A.
2.Using 1−sin2A=cos2A: LHS =cosAcos2A=cosA.
3.The correct option is (D) cosA.
(iv) 1+cot2A1+tan2A:
1.Use identities: 1+tan2A=sec2A and 1+cot2A=cosec2A.
LHS =cosec2Asec2A=1/sin2A1/cos2A=cos2Asin2A.
2.LHS =tan2A.
3.The correct option is (D) tan2A.
Question 4: Prove the following identities, where the angles involved are acute angles for which the expressions are defined. (i) (cosecθ–cotθ)2=1+cosθ1−cosθ
Solution-
1.Start with LHS, converting to sinθ and cosθ:
LHS =(cosecθ–cotθ)2=(sinθ1−sinθcosθ)2.
4.Use the difference of squares identity 1−cos2θ=(1−cosθ)(1+cosθ):
LHS =(1−cosθ)(1+cosθ)(1−cosθ)(1−cosθ)=1+cosθ1−cosθ.
5.LHS = RHS. Hence proved.
Question 4: Prove the following identities, where the angles involved are acute angles for which the expressions are defined. (ii) 1+sinAcosA+cosA1+sinA=2secA
Solution-
1.Start with LHS, combining fractions by finding a common denominator:
LHS =(1+sinA)cosAcos2A+(1+sinA)2.
2.Expand the term in the numerator:
LHS =(1+sinA)cosAcos2A+(1+2sinA+sin2A).
4.Simplify the numerator and factor:
LHS =(1+sinA)cosA2+2sinA=(1+sinA)cosA2(1+sinA).
5.Cancel the common factor (1+sinA):
LHS =cosA2.
6.Since secA=cosA1: LHS =2secA.
7.LHS = RHS. Hence proved.
Question 4: Prove the following identities, where the angles involved are acute angles for which the expressions are defined. (iii) 1−cotθtanθ+1−tanθcotθ=1+secθcosecθ [Hint : Write the expression in terms of sinθ and cosθ]
Solution-
1.Start with LHS, converting all ratios to sinθ and cosθ:
LHS =1−sinθcosθcosθsinθ+1−cosθsinθsinθcosθ.
2.Simplify the denominators:
LHS =sinθsinθ−cosθcosθsinθ+cosθcosθ−sinθsinθcosθ.
3.Invert and multiply:
LHS =cosθ(sinθ−cosθ)sin2θ+sinθ(cosθ−sinθ)cos2θ.
4.To obtain a common denominator, change the sign of the second term's denominator: cosθ−sinθ=−(sinθ−cosθ).
LHS =cosθ(sinθ−cosθ)sin2θ−sinθ(sinθ−cosθ)cos2θ.
5.Combine the terms:
LHS =sinθcosθ(sinθ−cosθ)sin3θ−cos3θ.
6.Use the algebraic identity a3−b3=(a−b)(a2+ab+b2), where a=sinθ and b=cosθ:
LHS =sinθcosθ(sinθ−cosθ)(sinθ−cosθ)(sin2θ+cos2θ+sinθcosθ).
7.Cancel (sinθ−cosθ) and use sin2θ+cos2θ=1:
LHS =sinθcosθ1+sinθcosθ=sinθcosθ1+sinθcosθsinθcosθ.
8.LHS =cosecθsecθ+1.
9.LHS = RHS. Hence proved.
Question 4: Prove the following identities, where the angles involved are acute angles for which the expressions are defined. (v) cosA+sinA–1cosA–sinA+1=cosecA+cotA, using the identity cosec2A=1+cot2A.
Solution-
1.Since the required RHS contains cosecA and cotA, divide the numerator (N) and denominator (D) of the LHS by sinA:
LHS =sinAcosA+sinAsinA−sinA1sinAcosA−sinAsinA+sinA1=cotA+1−cosecAcotA−1+cosecA.
2.Use the required identity cosec2A−cot2A=1 to replace '1' only in the numerator: N=(cotA+cosecA)−1=(cotA+cosecA)−(cosec2A−cot2A).
3.Factor the difference of squares: N=(cotA+cosecA)−(cosecA−cotA)(cosecA+cotA).
4.Factor out (cotA+cosecA): N=(cotA+cosecA)[1−(cosecA−cotA)]. N=(cotA+cosecA)[1−cosecA+cotA].
5.Substitute N back into LHS:
LHS =(cotA+1−cosecA)(cotA+cosecA)(1+cotA−cosecA).
6.Cancel the common factor (1+cotA−cosecA):
LHS =cotA+cosecA.
7.LHS = RHS. Hence proved.
Question 4: Prove the following identities, where the angles involved are acute angles for which the expressions are defined. (vi) 1–sinA1+sinA=secA+tanA
Solution-
1.Start with LHS, rationalize the expression by multiplying the numerator and denominator under the square root by (1+sinA):
LHS =1−sinA1+sinA×1+sinA1+sinA.
2.LHS =1−sin2A(1+sinA)2.
3.Use 1−sin2A=cos2A:
LHS =cos2A(1+sinA)2.
4.Take the square root:
LHS =cosA1+sinA.
5.Split the fraction:
LHS =cosA1+cosAsinA.
6.Use reciprocal and quotient identities:
LHS =secA+tanA.
7.LHS = RHS. Hence proved.
Question 4: Prove the following identities, where the angles involved are acute angles for which the expressions are defined. (ix) (cosecA–sinA)(secA–cosA)1=tanA+cotA [Hint : Simplify LHS and RHS separately]
Solution-
1.Simplify LHS, converting to sinA and cosA:
LHS =(cosecA–sinA)(secA–cosA).
LHS =(sinA1−sinA)(cosA1−cosA).
LHS =(sinA1−sin2A)(cosA1−cos2A).
2.Use identities 1−sin2A=cos2A and 1−cos2A=sin2A:
LHS =(sinAcos2A)(cosAsin2A)=cosAsinA. (Wait, the question is LHS1)
3.Re-evaluating the LHS based on the displayed question structure in:
LHS of the equality to be proven =(cosecA–sinA)(secA–cosA)1.
LHS =cosAsinA1.
4.Simplify RHS, converting to sinA and cosA:
RHS =tanA+cotA=cosAsinA+sinAcosA.
RHS =cosAsinAsin2A+cos2A.
5.Use sin2A+cos2A=1:
RHS =cosAsinA1.
6.Since LHS = RHS, the identity is proved.
Question 4: Prove the following identities, where the angles involved are acute angles for which the expressions are defined. (x) (1+cot2A1+tan2A)=(1−cotA1−tanA)2=tan2A
Solution-
1.Prove the first part: 1+cot2A1+tan2A=tan2A.
LHS =1+cot2A1+tan2A.
Use identities 1+tan2A=sec2A and 1+cot2A=cosec2A.
LHS =cosec2Asec2A=1/sin2A1/cos2A=cos2Asin2A=tan2A.
2.Prove the second part: (1−cotA1−tanA)2=tan2A.
Simplify the base of the square, converting cotA to tanA: 1−cotA1−tanA=1−tanA11−tanA. =tanAtanA−11−tanA=(1−tanA)×tanA−1tanA. =−(tanA−1)×tanA−1tanA=−tanA.
3.Square the result: (1−cotA1−tanA)2=(−tanA)2=tan2A.
4.Since both expressions equal tan2A, the identity is proved.