Back to Maths

NCERT Solutions For Class 10 Maths: Introduction to Trigonometry

October 12, 2025

EXERCISE 8.1

Question 1: In Δ\Delta ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine :
(i) sin A, cos A
(ii) sin C, cos C

Solution-
1.First, find the hypotenuse AC using the Pythagoras theorem.
AC=AB2+BC2=242+72=576+49=625=25AC = \sqrt{AB^2 + BC^2} = \sqrt{24^2 + 7^2} = \sqrt{576 + 49} = \sqrt{625} = 25 cm.

(i) Ratios for A\angle A:
1.sin A = side opposite to angle Ahypotenuse=BCAC=725\frac{\text{side opposite to angle A}}{\text{hypotenuse}} = \frac{BC}{AC} = \frac{7}{25}.

2.cos A = side adjacent to angle Ahypotenuse=ABAC=2425\frac{\text{side adjacent to angle A}}{\text{hypotenuse}} = \frac{AB}{AC} = \frac{24}{25}.

(ii) Ratios for C\angle C:
1.sin C = side opposite to angle Chypotenuse=ABAC=2425\frac{\text{side opposite to angle C}}{\text{hypotenuse}} = \frac{AB}{AC} = \frac{24}{25}.

2.cos C = side adjacent to angle Chypotenuse=BCAC=725\frac{\text{side adjacent to angle C}}{\text{hypotenuse}} = \frac{BC}{AC} = \frac{7}{25}.

Question 2: In Fig. 8.13, find tan P – cot R.

Solution-
1.In ΔPQR\Delta PQR, right-angled at Q, PQ = 12 cm and PR = 13 cm.
2.Find the side QR using the Pythagoras theorem:
QR=PR2PQ2=132122=169144=25=5QR = \sqrt{PR^2 - PQ^2} = \sqrt{13^2 - 12^2} = \sqrt{169 - 144} = \sqrt{25} = 5 cm.

3.Calculate tan P:
tanP=side opposite to angle Pside adjacent to angle P=QRPQ=512\tan P = \frac{\text{side opposite to angle P}}{\text{side adjacent to angle P}} = \frac{QR}{PQ} = \frac{5}{12}.

4.Calculate cot R:
cotR=side adjacent to angle Rside opposite to angle R=QRPQ=512\cot R = \frac{\text{side adjacent to angle R}}{\text{side opposite to angle R}} = \frac{QR}{PQ} = \frac{5}{12}.

5.Determine tan P – cot R:
tanPcotR=512512=0\tan P - \cot R = \frac{5}{12} - \frac{5}{12} = 0.

Question 3: If sinA=34\sin A = \frac{3}{4}, calculate cosA\cos A and tanA\tan A.

Solution-
1.Given sinA=34=Opposite SideHypotenuse\sin A = \frac{3}{4} = \frac{\text{Opposite Side}}{\text{Hypotenuse}}. Let BC = 3k and AC = 4k.
2.Find the adjacent side AB using the Pythagoras theorem:
AB=AC2BC2=(4k)2(3k)2=16k29k2=7k2=k7AB = \sqrt{AC^2 - BC^2} = \sqrt{(4k)^2 - (3k)^2} = \sqrt{16k^2 - 9k^2} = \sqrt{7k^2} = k\sqrt{7}.

3.Calculate cosA\cos A:
cosA=Adjacent SideHypotenuse=ABAC=k74k=74\cos A = \frac{\text{Adjacent Side}}{\text{Hypotenuse}} = \frac{AB}{AC} = \frac{k\sqrt{7}}{4k} = \frac{\sqrt{7}}{4}.

4.Calculate tanA\tan A:
tanA=Opposite SideAdjacent Side=BCAB=3kk7=37\tan A = \frac{\text{Opposite Side}}{\text{Adjacent Side}} = \frac{BC}{AB} = \frac{3k}{k\sqrt{7}} = \frac{3}{\sqrt{7}}. (Alternatively, tanA=sinAcosA\tan A = \frac{\sin A}{\cos A}).

Question 4: Given 15 cot A = 8, find sinA\sin A and secA\sec A.

Solution-
1.Given cotA=815=Adjacent Side (AB)Opposite Side (BC)\cot A = \frac{8}{15} = \frac{\text{Adjacent Side (AB)}}{\text{Opposite Side (BC)}}. Let AB = 8k and BC = 15k.
2.Find the hypotenuse AC using the Pythagoras theorem:
AC=AB2+BC2=(8k)2+(15k)2=64k2+225k2=289k2=17kAC = \sqrt{AB^2 + BC^2} = \sqrt{(8k)^2 + (15k)^2} = \sqrt{64k^2 + 225k^2} = \sqrt{289k^2} = 17k.

3.Calculate sinA\sin A:
sinA=Opposite SideHypotenuse=BCAC=15k17k=1517\sin A = \frac{\text{Opposite Side}}{\text{Hypotenuse}} = \frac{BC}{AC} = \frac{15k}{17k} = \frac{15}{17}.

4.Calculate secA\sec A:
secA=HypotenuseAdjacent Side=ACAB=17k8k=178\sec A = \frac{\text{Hypotenuse}}{\text{Adjacent Side}} = \frac{AC}{AB} = \frac{17k}{8k} = \frac{17}{8}.

Question 5: Given secθ=1312\sec \theta = \frac{13}{12}, calculate all other trigonometric ratios.

Solution-
1.Given secθ=1312=HypotenuseAdjacent Side\sec \theta = \frac{13}{12} = \frac{\text{Hypotenuse}}{\text{Adjacent Side}}. Let Hypotenuse = 13k and Adjacent Side = 12k.
2.Find the Opposite Side using the Pythagoras theorem:
Opposite Side =(13k)2(12k)2=169k2144k2=25k2=5k= \sqrt{(13k)^2 - (12k)^2} = \sqrt{169k^2 - 144k^2} = \sqrt{25k^2} = 5k.

3.Calculate the other ratios:
1.cosθ=1secθ=1213\cos \theta = \frac{1}{\sec \theta} = \frac{12}{13}.

2.sinθ=Opposite SideHypotenuse=5k13k=513\sin \theta = \frac{\text{Opposite Side}}{\text{Hypotenuse}} = \frac{5k}{13k} = \frac{5}{13}.

3.tanθ=Opposite SideAdjacent Side=5k12k=512\tan \theta = \frac{\text{Opposite Side}}{\text{Adjacent Side}} = \frac{5k}{12k} = \frac{5}{12}.

4.cosecθ=1sinθ=135\operatorname{cosec} \theta = \frac{1}{\sin \theta} = \frac{13}{5}.

5.cotθ=1tanθ=125\cot \theta = \frac{1}{\tan \theta} = \frac{12}{5}.

Question 6: If A\angle A and B\angle B are acute angles such that cosA=cosB\cos A = \cos B, then show that A=B\angle A = \angle B.

Solution-
1.Consider two right triangles, ACB\triangle ACB (right-angled at C) and PRQ\triangle PRQ (right-angled at R), or consider a single triangle ABC\triangle ABC right-angled at C (since A and B are acute angles).
2.If cosA=cosB\cos A = \cos B in ABC\triangle ABC (right-angled at C), then ACAB=BCAB\frac{AC}{AB} = \frac{BC}{AB}.
3.This implies AC=BCAC = BC.
4.In a triangle, the sides opposite to equal angles are equal. Since side AC is opposite to B\angle B and side BC is opposite to A\angle A, having AC=BCAC=BC implies A=B\angle A = \angle B.
(Alternatively, using the similar triangle approach demonstrated in Example 2, if cosA=cosB\cos A = \cos B, we can show that ACBBDA\triangle ACB \sim \triangle BDA or use similar construction to prove the angles are equal).

Question 7: If cotθ=78\cot \theta = \frac{7}{8}, evaluate : (i) (1+sinθ)(1sinθ)(1+cosθ)(1cosθ)\frac{(1 + \sin \theta) (1 - \sin \theta)}{(1 + \cos \theta) (1 - \cos \theta)} (ii) cot2θ\cot^2 \theta

Solution-
(i) Evaluate (1+sinθ)(1sinθ)(1+cosθ)(1cosθ)\frac{(1 + \sin \theta) (1 - \sin \theta)}{(1 + \cos \theta) (1 - \cos \theta)}:
1.Using the algebraic identity (a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2, the expression simplifies to 1sin2θ1cos2θ\frac{1 - \sin^2 \theta}{1 - \cos^2 \theta}.

2.Using the trigonometric identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1, we know 1sin2θ=cos2θ1 - \sin^2 \theta = \cos^2 \theta and 1cos2θ=sin2θ1 - \cos^2 \theta = \sin^2 \theta.

3.The expression becomes cos2θsin2θ\frac{\cos^2 \theta}{\sin^2 \theta}. Since cosθsinθ=cotθ\frac{\cos \theta}{\sin \theta} = \cot \theta, this is equal to cot2θ\cot^2 \theta.

4.Substitute the given value: cot2θ=(78)2=4964\cot^2 \theta = \left(\frac{7}{8}\right)^2 = \frac{49}{64}.

(ii) Evaluate cot2θ\cot^2 \theta:
1.Given cotθ=78\cot \theta = \frac{7}{8}.

2.cot2θ=(78)2=4964\cot^2 \theta = \left(\frac{7}{8}\right)^2 = \frac{49}{64}.

Question 8: If 3 cot A = 4, check whether 1tan2A1+tan2A=cos2Asin2A\frac{1 - \tan^2 A}{1 + \tan^2 A} = \cos^2 A - \sin^2 A or not.

Solution-
1.Given 3cotA=43 \cot A = 4, so cotA=43\cot A = \frac{4}{3}. Thus tanA=1cotA=34\tan A = \frac{1}{\cot A} = \frac{3}{4}.

2.Assume a right triangle where Adjacent =4k= 4k and Opposite =3k= 3k. Hypotenuse =42+32=5k= \sqrt{4^2 + 3^2} = 5k.

3.Calculate sinA=35\sin A = \frac{3}{5} and cosA=45\cos A = \frac{4}{5}.

4.Evaluate the Left Hand Side (LHS):
LHS=1tan2A1+tan2A=1(3/4)21+(3/4)2=19/161+9/16=7/1625/16=725LHS = \frac{1 - \tan^2 A}{1 + \tan^2 A} = \frac{1 - (3/4)^2}{1 + (3/4)^2} = \frac{1 - 9/16}{1 + 9/16} = \frac{7/16}{25/16} = \frac{7}{25}.

5.Evaluate the Right Hand Side (RHS):
RHS=cos2Asin2A=(45)2(35)2=1625925=725RHS = \cos^2 A - \sin^2 A = \left(\frac{4}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = \frac{16}{25} - \frac{9}{25} = \frac{7}{25}.

6.Since LHS = RHS (725=725\frac{7}{25} = \frac{7}{25}), the given statement is true.

Question 9: In triangle ABC, right-angled at B, if tanA=13\tan A = \frac{1}{\sqrt{3}}, find the value of:
(i) sinAcosC+cosAsinC\sin A \cos C + \cos A \sin C
(ii) cosAcosCsinAsinC\cos A \cos C – \sin A \sin C

Solution-
1.Given tanA=13\tan A = \frac{1}{\sqrt{3}}. We recognize this standard ratio corresponds to A=30A = 30^\circ.
2.Since ΔABC\Delta ABC is right-angled at B (9090^\circ), C=1809030=60\angle C = 180^\circ - 90^\circ - 30^\circ = 60^\circ.
3.Using trigonometric ratio values for 3030^\circ and 6060^\circ:
sinA=sin30=1/2\sin A = \sin 30^\circ = 1/2. cosA=cos30=3/2\cos A = \cos 30^\circ = \sqrt{3}/2.
sinC=sin60=3/2\sin C = \sin 60^\circ = \sqrt{3}/2. cosC=cos60=1/2\cos C = \cos 60^\circ = 1/2.

(i) Calculate sinAcosC+cosAsinC\sin A \cos C + \cos A \sin C:
1.(12)(12)+(32)(32)=14+34=44=1\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) + \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) = \frac{1}{4} + \frac{3}{4} = \frac{4}{4} = 1.

(ii) Calculate cosAcosCsinAsinC\cos A \cos C – \sin A \sin C:
1.(32)(12)(12)(32)=3434=0\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right) - \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} = 0.

Question 10: In Δ\Delta PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sinP\sin P, cosP\cos P and tanP\tan P.

Solution-
1.In ΔPQR\Delta PQR, by Pythagoras theorem, PQ2+QR2=PR2PQ^2 + QR^2 = PR^2.
2.We are given PQ=5PQ = 5 cm and PR+QR=25PR + QR = 25 cm. Let PR=25QRPR = 25 - QR.
3.Substitute into the Pythagoras equation:
52+QR2=(25QR)25^2 + QR^2 = (25 - QR)^2.
25+QR2=62550QR+QR225 + QR^2 = 625 - 50QR + QR^2.
25=62550QR25 = 625 - 50QR.
50QR=60050QR = 600.
QR=12QR = 12 cm.

4.Find PR:
PR=25QR=2512=13PR = 25 - QR = 25 - 12 = 13 cm.

5.Determine the trigonometric ratios for P\angle P:
1.sin P = Opposite Side (QR)Hypotenuse (PR)=1213\frac{\text{Opposite Side (QR)}}{\text{Hypotenuse (PR)}} = \frac{12}{13}.

2.cos P = Adjacent Side (PQ)Hypotenuse (PR)=513\frac{\text{Adjacent Side (PQ)}}{\text{Hypotenuse (PR)}} = \frac{5}{13}.

3.tan P = Opposite Side (QR)Adjacent Side (PQ)=125\frac{\text{Opposite Side (QR)}}{\text{Adjacent Side (PQ)}} = \frac{12}{5}.

Question 11: State whether the following are true or false. Justify your answer.
(i) The value of tanA\tan A is always less than 1.
(ii) secA=125\sec A = \frac{12}{5} for some value of angle A.
(iii) cosA\cos A is the abbreviation used for the cosecant of angle A.
(iv) cotA\cot A is the product of cot\cot and AA.
(v) sinθ=43\sin \theta = \frac{4}{3} for some angle θ\theta.

Solution-
(i) The value of tanA\tan A is always less than 1.
1.False. tanA\tan A is defined as the ratio of the side opposite to A\angle A to the side adjacent to A\angle A. This ratio can be greater than 1, equal to 1 (when A=45A=45^\circ), or less than 1. For example, tan60=31.732\tan 60^\circ = \sqrt{3} \approx 1.732, which is greater than 1.

(ii) secA=125\sec A = \frac{12}{5} for some value of angle A.
1.True. secA\sec A is the ratio of the hypotenuse to the adjacent side. Since the hypotenuse is the longest side in a right triangle, secA\sec A must always be greater than or equal to 1. Since 125=2.4\frac{12}{5} = 2.4, which is greater than 1, this value is possible.

(iii) cosA\cos A is the abbreviation used for the cosecant of angle A.
1.False. cosA\cos A is the abbreviation for the cosine of angle A. The abbreviation for cosecant of angle A is cosecA\operatorname{cosec} A.

(iv) cotA\cot A is the product of cot\cot and AA.
1.False. cotA\cot A is used as an abbreviation for 'the cotangent of angle A'. 'cot' separated from A has no meaning, and it is not a product.

(v) sinθ=43\sin \theta = \frac{4}{3} for some angle θ\theta.
1.False. sinθ\sin \theta is the ratio of the side opposite to θ\theta to the hypotenuse. Since the hypotenuse is the longest side, the side opposite can never be greater than the hypotenuse, meaning the value of sinθ\sin \theta can never exceed 1. Since 431.33\frac{4}{3} \approx 1.33, this value is impossible.


EXERCISE 8.2

Question 1: Evaluate the following :
(i) sin60cos30+sin30cos60\sin 60^\circ \cos 30^\circ + \sin 30^\circ \cos 60^\circ
(ii) 2tan245+cos230sin2602 \tan^2 45^\circ + \cos^2 30^\circ – \sin^2 60^\circ
(iii) cos45sec30+cosec30\frac{\cos 45^\circ}{\sec 30^\circ + \operatorname{cosec} 30^\circ}
(iv) sin30+tan45cosec60sec30+cos60+cot45\frac{\sin 30^\circ + \tan 45^\circ – \operatorname{cosec} 60^\circ}{\sec 30^\circ + \cos 60^\circ + \cot 45^\circ}
(v) 5cos260+4sec230tan245sin230+cos230\frac{5 \cos^2 60^\circ + 4 \sec^2 30^\circ – \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}

Solution-
(i) sin60cos30+sin30cos60\sin 60^\circ \cos 30^\circ + \sin 30^\circ \cos 60^\circ:
1.Substitute values from Table 8.1: (32)(32)+(12)(12)\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{1}{2}\right).
2.=34+14=44=1=\frac{3}{4} + \frac{1}{4} = \frac{4}{4} = 1.

(ii) 2tan245+cos230sin2602 \tan^2 45^\circ + \cos^2 30^\circ – \sin^2 60^\circ:
1.Substitute values: 2(1)2+(32)2(32)22(1)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{\sqrt{3}}{2}\right)^2.
2.=2+3434=2= 2 + \frac{3}{4} - \frac{3}{4} = 2.

(iii) cos45sec30+cosec30\frac{\cos 45^\circ}{\sec 30^\circ + \operatorname{cosec} 30^\circ}:
1.Substitute values: 1/22/3+2\frac{1/\sqrt{2}}{2/\sqrt{3} + 2}.
2.=1/22+233=12×32(1+3)=322(1+3)=\frac{1/\sqrt{2}}{\frac{2 + 2\sqrt{3}}{\sqrt{3}}} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2(1 + \sqrt{3})} = \frac{\sqrt{3}}{2\sqrt{2}(1 + \sqrt{3})}.
3.Rationalize the denominator by multiplying by (31)2(31)2\frac{(\sqrt{3}-1)\sqrt{2}}{(\sqrt{3}-1)\sqrt{2}}:
=6(31)222(31)=1862(2)(2)=3268=\frac{\sqrt{6}(\sqrt{3}-1)}{2\sqrt{2}\sqrt{2}(3-1)} = \frac{\sqrt{18} - \sqrt{6}}{2(2)(2)} = \frac{3\sqrt{2} - \sqrt{6}}{8}.

(iv) sin30+tan45cosec60sec30+cos60+cot45\frac{\sin 30^\circ + \tan 45^\circ – \operatorname{cosec} 60^\circ}{\sec 30^\circ + \cos 60^\circ + \cot 45^\circ}:
1.Substitute values: 12+12323+12+1\frac{\frac{1}{2} + 1 - \frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}} + \frac{1}{2} + 1}.
2.Numerator =3223=33423= \frac{3}{2} - \frac{2}{\sqrt{3}} = \frac{3\sqrt{3} - 4}{2\sqrt{3}}.
3.Denominator =23+32=4+3323= \frac{2}{\sqrt{3}} + \frac{3}{2} = \frac{4 + 3\sqrt{3}}{2\sqrt{3}}.
4.Expression =33423÷33+423=33433+4= \frac{3\sqrt{3} - 4}{2\sqrt{3}} \div \frac{3\sqrt{3} + 4}{2\sqrt{3}} = \frac{3\sqrt{3} - 4}{3\sqrt{3} + 4}.
5.Rationalize: (334)2(33)242=27243+162716=4324311\frac{(3\sqrt{3} - 4)^2}{(3\sqrt{3})^2 - 4^2} = \frac{27 - 24\sqrt{3} + 16}{27 - 16} = \frac{43 - 24\sqrt{3}}{11}.

(v) 5cos260+4sec230tan245sin230+cos230\frac{5 \cos^2 60^\circ + 4 \sec^2 30^\circ – \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}:
1.The denominator is sin230+cos230\sin^2 30^\circ + \cos^2 30^\circ. Using the identity sin2A+cos2A=1\sin^2 A + \cos^2 A = 1, the denominator equals 1.
2.Evaluate the numerator using values: 5(12)2+4(23)2(1)25\left(\frac{1}{2}\right)^2 + 4\left(\frac{2}{\sqrt{3}}\right)^2 - (1)^2.
3.=5(14)+4(43)1=54+1631= 5\left(\frac{1}{4}\right) + 4\left(\frac{4}{3}\right) - 1 = \frac{5}{4} + \frac{16}{3} - 1.
4.Find the common denominator (12): 1512+64121212=15+641212=6712\frac{15}{12} + \frac{64}{12} - \frac{12}{12} = \frac{15 + 64 - 12}{12} = \frac{67}{12}.

Question 2: Choose the correct option and justify your choice :
(i) 2tan301+tan230\frac{2 \tan 30^\circ}{1 + \tan^2 30^\circ}
(A) sin60\sin 60^\circ (B) cos60\cos 60^\circ (C) tan60\tan 60^\circ (D) sin30\sin 30^\circ

(ii) 1tan2451+tan245\frac{1 - \tan^2 45^\circ}{1 + \tan^2 45^\circ}
(A) tan90\tan 90^\circ (B) 1 (C) sin45\sin 45^\circ (D) 0

(iii) sin2A=2sinA\sin 2A = 2 \sin A is true when A=A =
(A) 00^\circ (B) 3030^\circ (C) 4545^\circ (D) 6060^\circ

(iv) 2tan301tan230\frac{2 \tan 30^\circ}{1 - \tan^2 30^\circ}
(A) cos60\cos 60^\circ (B) sin60\sin 60^\circ (C) tan60\tan 60^\circ (D) sin30\sin 30^\circ

Solution-
(i) 2tan301+tan230\frac{2 \tan 30^\circ}{1 + \tan^2 30^\circ}:
1.Substitute tan30=1/3\tan 30^\circ = 1/\sqrt{3}: 2(1/3)1+(1/3)2=2/31+1/3=2/34/3\frac{2(1/\sqrt{3})}{1 + (1/\sqrt{3})^2} = \frac{2/\sqrt{3}}{1 + 1/3} = \frac{2/\sqrt{3}}{4/3}.
2.=23×34=643=323=32= \frac{2}{\sqrt{3}} \times \frac{3}{4} = \frac{6}{4\sqrt{3}} = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}.
3.Since sin60=32\sin 60^\circ = \frac{\sqrt{3}}{2}, the correct option is (A) sin60\sin 60^\circ.

(ii) 1tan2451+tan245\frac{1 - \tan^2 45^\circ}{1 + \tan^2 45^\circ}:
1.Substitute tan45=1\tan 45^\circ = 1: 1(1)21+(1)2=111+1=02=0\frac{1 - (1)^2}{1 + (1)^2} = \frac{1 - 1}{1 + 1} = \frac{0}{2} = 0.
2.The correct option is (D) 0.

(iii) sin2A=2sinA\sin 2A = 2 \sin A is true when A=A = :
1.We check A=0A=0^\circ. sin(2×0)=sin0=0\sin (2 \times 0^\circ) = \sin 0^\circ = 0.
2.2sin0=2(0)=02 \sin 0^\circ = 2(0) = 0. Since 0=00=0, the condition is true for A=0A=0^\circ.
3.The correct option is (A) 00^\circ.

(iv) 2tan301tan230\frac{2 \tan 30^\circ}{1 - \tan^2 30^\circ}:
1.Substitute tan30=1/3\tan 30^\circ = 1/\sqrt{3}: 2(1/3)1(1/3)2=2/311/3=2/32/3\frac{2(1/\sqrt{3})}{1 - (1/\sqrt{3})^2} = \frac{2/\sqrt{3}}{1 - 1/3} = \frac{2/\sqrt{3}}{2/3}.
2.=23×32=33=3= \frac{2}{\sqrt{3}} \times \frac{3}{2} = \frac{3}{\sqrt{3}} = \sqrt{3}.
3.Since tan60=3\tan 60^\circ = \sqrt{3}, the correct option is (C) tan60\tan 60^\circ.

Question 3: If tan(A+B)=3\tan (A + B) = \sqrt{3} and tan(AB)=13\tan (A – B) = \frac{1}{\sqrt{3}}; 0<A+B900^\circ < A + B \leq 90^\circ; A>BA > B, find A and B.

Solution-
1.Given tan(A+B)=3\tan (A + B) = \sqrt{3}. Since tan60=3\tan 60^\circ = \sqrt{3}, we have A+B=60A + B = 60^\circ (1).

2.Given tan(AB)=13\tan (A - B) = \frac{1}{\sqrt{3}}. Since tan30=13\tan 30^\circ = \frac{1}{\sqrt{3}}, we have AB=30A - B = 30^\circ (2).

3.Add equations (1) and (2):
(A+B)+(AB)=60+30(A + B) + (A - B) = 60^\circ + 30^\circ.
2A=902A = 90^\circ.
A=45A = 45^\circ.

4.Substitute A=45A = 45^\circ into equation (1):
45+B=6045^\circ + B = 60^\circ.
B=15B = 15^\circ.

5.The values are A=45\mathbf{A = 45^\circ} and B=15\mathbf{B = 15^\circ}.

Question 4: State whether the following are true or false. Justify your answer.
(i) sin(A+B)=sinA+sinB\sin (A + B) = \sin A + \sin B.
(ii) The value of sinθ\sin \theta increases as θ\theta increases.
(iii) The value of cosθ\cos \theta increases as θ\theta increases.
(iv) sinθ=cosθ\sin \theta = \cos \theta for all values of θ\theta.
(v) cotA\cot A is not defined for A=0A = 0^\circ.

Solution-
(i) sin(A+B)=sinA+sinB\sin (A + B) = \sin A + \sin B.
1.False. Let A=60A = 60^\circ and B=30B = 30^\circ.
LHS=sin(60+30)=sin90=1LHS = \sin (60^\circ + 30^\circ) = \sin 90^\circ = 1.
RHS=sin60+sin30=32+121RHS = \sin 60^\circ + \sin 30^\circ = \frac{\sqrt{3}}{2} + \frac{1}{2} \neq 1.

(ii) The value of sinθ\sin \theta increases as θ\theta increases.
1.True. As A\angle A increases from 00^\circ to 9090^\circ, the value of sinA\sin A increases monotonically from 0 to 1.

(iii) The value of cosθ\cos \theta increases as θ\theta increases.
1.False. As A\angle A increases from 00^\circ to 9090^\circ, the value of cosA\cos A decreases monotonically from 1 to 0.

(iv) sinθ=cosθ\sin \theta = \cos \theta for all values of θ\theta.
1.False. This equality is true only when θ=45\theta = 45^\circ, where both sin45\sin 45^\circ and cos45\cos 45^\circ equal 12\frac{1}{\sqrt{2}}.

(v) cotA\cot A is not defined for A=0A = 0^\circ.
1.True. cot0\cot 0^\circ is defined as 1tan0\frac{1}{\tan 0^\circ}. Since tan0=0\tan 0^\circ = 0, cot0=10\cot 0^\circ = \frac{1}{0}, which is not defined.


EXERCISE 8.3

Question 1: Express the trigonometric ratios sinA\sin A, secA\sec A and tanA\tan A in terms of cotA\cot A.

Solution-
1.Express sinA\sin A in terms of cotA\cot A:
We use the identity cosec2A=1+cot2A\operatorname{cosec}^2 A = 1 + \cot^2 A.
cosecA=1+cot2A\operatorname{cosec} A = \sqrt{1 + \cot^2 A}.
Since sinA=1cosecA\sin A = \frac{1}{\operatorname{cosec} A}, sinA=11+cot2A\sin A = \frac{1}{\sqrt{1 + \cot^2 A}}.

2.Express tanA\tan A in terms of cotA\cot A:
By reciprocal relation, tanA=1cotA\tan A = \frac{1}{\cot A}.

3.Express secA\sec A in terms of cotA\cot A:
We use the identity sec2A=1+tan2A\sec^2 A = 1 + \tan^2 A.
secA=1+tan2A\sec A = \sqrt{1 + \tan^2 A}.
Substitute tanA=1/cotA\tan A = 1/\cot A: secA=1+(1cotA)2=cot2A+1cot2A\sec A = \sqrt{1 + \left(\frac{1}{\cot A}\right)^2} = \sqrt{\frac{\cot^2 A + 1}{\cot^2 A}}.
secA=1+cot2AcotA\sec A = \frac{\sqrt{1 + \cot^2 A}}{\cot A}.

Question 2: Write all the other trigonometric ratios of A\angle A in terms of secA\sec A.

Solution-
1.Express cosA\cos A:
cosA=1secA\cos A = \frac{1}{\sec A}.

2.Express sinA\sin A:
Using the identity sin2A+cos2A=1\sin^2 A + \cos^2 A = 1, we have sinA=1cos2A\sin A = \sqrt{1 - \cos^2 A}.
Substituting cosA=1/secA\cos A = 1/\sec A: sinA=1(1secA)2=sec2A1sec2A\sin A = \sqrt{1 - \left(\frac{1}{\sec A}\right)^2} = \sqrt{\frac{\sec^2 A - 1}{\sec^2 A}}.
sinA=sec2A1secA\sin A = \frac{\sqrt{\sec^2 A - 1}}{\sec A}.

3.Express tanA\tan A:
Using the identity 1+tan2A=sec2A1 + \tan^2 A = \sec^2 A, we have tanA=sec2A1\tan A = \sqrt{\sec^2 A - 1}.

4.Express cotA\cot A:
cotA=1tanA\cot A = \frac{1}{\tan A}.
cotA=1sec2A1\cot A = \frac{1}{\sqrt{\sec^2 A - 1}}.

5.Express cosecA\operatorname{cosec} A:
cosecA=1sinA\operatorname{cosec} A = \frac{1}{\sin A}.
cosecA=secAsec2A1\operatorname{cosec} A = \frac{\sec A}{\sqrt{\sec^2 A - 1}}.

Question 3: Choose the correct option. Justify your choice.
(i) 9sec2A9tan2A=9 \sec^2 A – 9 \tan^2 A =
(A) 1 (B) 9 (C) 8 (D) 0

(ii) (1+tanθ+secθ)(1+cotθcosecθ)=(1 + \tan \theta + \sec \theta) (1 + \cot \theta – \operatorname{cosec} \theta) =
(A) 0 (B) 1 (C) 2 (D) –1

(iii) (secA+tanA)(1sinA)=(\sec A + \tan A) (1 – \sin A) =
(A) secA\sec A (B) sinA\sin A (C) cosecA\operatorname{cosec} A (D) cosA\cos A

(iv) 1+tan2A1+cot2A=\frac{1 + \tan^2 A}{1 + \cot^2 A} =
(A) sec2A\sec^2 A (B) –1 (C) cot2A\cot^2 A (D) tan2A\tan^2 A

Solution-
(i) 9sec2A9tan2A9 \sec^2 A – 9 \tan^2 A:
1.Factor out 9: 9(sec2Atan2A)9(\sec^2 A - \tan^2 A).
2.Using the identity sec2A=1+tan2A\sec^2 A = 1 + \tan^2 A, we have sec2Atan2A=1\sec^2 A - \tan^2 A = 1.
3.Result: 9(1)=99(1) = 9.
4.The correct option is (B) 9.

(ii) (1+tanθ+secθ)(1+cotθcosecθ)(1 + \tan \theta + \sec \theta) (1 + \cot \theta – \operatorname{cosec} \theta):
1.Convert to sinθ\sin \theta and cosθ\cos \theta:
LHS =(1+sinθcosθ+1cosθ)(1+cosθsinθ1sinθ)= (1 + \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta})(1 + \frac{\cos \theta}{\sin \theta} - \frac{1}{\sin \theta}).
LHS =(cosθ+sinθ+1cosθ)(sinθ+cosθ1sinθ)= \left(\frac{\cos \theta + \sin \theta + 1}{\cos \theta}\right)\left(\frac{\sin \theta + \cos \theta - 1}{\sin \theta}\right).
2.Multiply numerators using (X+1)(X1)=X21(X+1)(X-1) = X^2 - 1, where X=(sinθ+cosθ)X = (\sin \theta + \cos \theta):
Numerator =(sinθ+cosθ)21=(sin2θ+cos2θ+2sinθcosθ)1= (\sin \theta + \cos \theta)^2 - 1 = (\sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta) - 1.
3.Using sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1, Numerator =(1+2sinθcosθ)1=2sinθcosθ= (1 + 2 \sin \theta \cos \theta) - 1 = 2 \sin \theta \cos \theta.
4.LHS =2sinθcosθcosθsinθ=2= \frac{2 \sin \theta \cos \theta}{\cos \theta \sin \theta} = 2.
5.The correct option is (C) 2.

(iii) (secA+tanA)(1sinA)(\sec A + \tan A) (1 – \sin A):
1.Convert to sinA\sin A and cosA\cos A:
LHS =(1cosA+sinAcosA)(1sinA)= \left(\frac{1}{\cos A} + \frac{\sin A}{\cos A}\right) (1 – \sin A).
LHS =(1+sinA)cosA(1sinA)=1sin2AcosA= \frac{(1 + \sin A)}{\cos A} (1 – \sin A) = \frac{1 - \sin^2 A}{\cos A}.
2.Using 1sin2A=cos2A1 - \sin^2 A = \cos^2 A: LHS =cos2AcosA=cosA= \frac{\cos^2 A}{\cos A} = \cos A.
3.The correct option is (D) cosA\cos A.

(iv) 1+tan2A1+cot2A\frac{1 + \tan^2 A}{1 + \cot^2 A}:
1.Use identities: 1+tan2A=sec2A1 + \tan^2 A = \sec^2 A and 1+cot2A=cosec2A1 + \cot^2 A = \operatorname{cosec}^2 A.
LHS =sec2Acosec2A=1/cos2A1/sin2A=sin2Acos2A= \frac{\sec^2 A}{\operatorname{cosec}^2 A} = \frac{1/\cos^2 A}{1/\sin^2 A} = \frac{\sin^2 A}{\cos^2 A}.
2.LHS =tan2A= \tan^2 A.
3.The correct option is (D) tan2A\tan^2 A.

Question 4: Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(i) (cosecθcotθ)2=1cosθ1+cosθ(\operatorname{cosec} \theta – \cot \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta}

Solution-
1.Start with LHS, converting to sinθ\sin \theta and cosθ\cos \theta:
LHS =(cosecθcotθ)2=(1sinθcosθsinθ)2= (\operatorname{cosec} \theta – \cot \theta)^2 = \left(\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta}\right)^2.

2.LHS =(1cosθsinθ)2=(1cosθ)2sin2θ= \left(\frac{1 - \cos \theta}{\sin \theta}\right)^2 = \frac{(1 - \cos \theta)^2}{\sin^2 \theta}.

3.Substitute sin2θ=1cos2θ\sin^2 \theta = 1 - \cos^2 \theta:
LHS =(1cosθ)21cos2θ= \frac{(1 - \cos \theta)^2}{1 - \cos^2 \theta}.

4.Use the difference of squares identity 1cos2θ=(1cosθ)(1+cosθ)1 - \cos^2 \theta = (1 - \cos \theta)(1 + \cos \theta):
LHS =(1cosθ)(1cosθ)(1cosθ)(1+cosθ)=1cosθ1+cosθ= \frac{(1 - \cos \theta)(1 - \cos \theta)}{(1 - \cos \theta)(1 + \cos \theta)} = \frac{1 - \cos \theta}{1 + \cos \theta}.

5.LHS = RHS. Hence proved.

Question 4: Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(ii) cosA1+sinA+1+sinAcosA=2secA\frac{\cos A}{1 + \sin A} + \frac{1 + \sin A}{\cos A} = 2 \sec A

Solution-
1.Start with LHS, combining fractions by finding a common denominator:
LHS =cos2A+(1+sinA)2(1+sinA)cosA= \frac{\cos^2 A + (1 + \sin A)^2}{(1 + \sin A) \cos A}.

2.Expand the term in the numerator:
LHS =cos2A+(1+2sinA+sin2A)(1+sinA)cosA= \frac{\cos^2 A + (1 + 2 \sin A + \sin^2 A)}{(1 + \sin A) \cos A}.

3.Group sin2A+cos2A=1\sin^2 A + \cos^2 A = 1:
LHS =(sin2A+cos2A)+1+2sinA(1+sinA)cosA=1+1+2sinA(1+sinA)cosA= \frac{(\sin^2 A + \cos^2 A) + 1 + 2 \sin A}{(1 + \sin A) \cos A} = \frac{1 + 1 + 2 \sin A}{(1 + \sin A) \cos A}.

4.Simplify the numerator and factor:
LHS =2+2sinA(1+sinA)cosA=2(1+sinA)(1+sinA)cosA= \frac{2 + 2 \sin A}{(1 + \sin A) \cos A} = \frac{2(1 + \sin A)}{(1 + \sin A) \cos A}.

5.Cancel the common factor (1+sinA)(1 + \sin A):
LHS =2cosA= \frac{2}{\cos A}.

6.Since secA=1cosA\sec A = \frac{1}{\cos A}: LHS =2secA= 2 \sec A.

7.LHS = RHS. Hence proved.

Question 4: Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(iii) tanθ1cotθ+cotθ1tanθ=1+secθcosecθ\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \sec \theta \operatorname{cosec} \theta [Hint : Write the expression in terms of sinθ\sin \theta and cosθ\cos \theta]

Solution-
1.Start with LHS, converting all ratios to sinθ\sin \theta and cosθ\cos \theta:
LHS =sinθcosθ1cosθsinθ+cosθsinθ1sinθcosθ= \frac{\frac{\sin \theta}{\cos \theta}}{1 - \frac{\cos \theta}{\sin \theta}} + \frac{\frac{\cos \theta}{\sin \theta}}{1 - \frac{\sin \theta}{\cos \theta}}.

2.Simplify the denominators:
LHS =sinθcosθsinθcosθsinθ+cosθsinθcosθsinθcosθ= \frac{\frac{\sin \theta}{\cos \theta}}{\frac{\sin \theta - \cos \theta}{\sin \theta}} + \frac{\frac{\cos \theta}{\sin \theta}}{\frac{\cos \theta - \sin \theta}{\cos \theta}}.

3.Invert and multiply:
LHS =sin2θcosθ(sinθcosθ)+cos2θsinθ(cosθsinθ)= \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} + \frac{\cos^2 \theta}{\sin \theta (\cos \theta - \sin \theta)}.

4.To obtain a common denominator, change the sign of the second term's denominator: cosθsinθ=(sinθcosθ)\cos \theta - \sin \theta = -(\sin \theta - \cos \theta).
LHS =sin2θcosθ(sinθcosθ)cos2θsinθ(sinθcosθ)= \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} - \frac{\cos^2 \theta}{\sin \theta (\sin \theta - \cos \theta)}.

5.Combine the terms:
LHS =sin3θcos3θsinθcosθ(sinθcosθ)= \frac{\sin^3 \theta - \cos^3 \theta}{\sin \theta \cos \theta (\sin \theta - \cos \theta)}.

6.Use the algebraic identity a3b3=(ab)(a2+ab+b2)a^3 - b^3 = (a - b)(a^2 + ab + b^2), where a=sinθa=\sin \theta and b=cosθb=\cos \theta:
LHS =(sinθcosθ)(sin2θ+cos2θ+sinθcosθ)sinθcosθ(sinθcosθ)= \frac{(\sin \theta - \cos \theta)(\sin^2 \theta + \cos^2 \theta + \sin \theta \cos \theta)}{\sin \theta \cos \theta (\sin \theta - \cos \theta)}.

7.Cancel (sinθcosθ)(\sin \theta - \cos \theta) and use sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1:
LHS =1+sinθcosθsinθcosθ=1sinθcosθ+sinθcosθsinθcosθ= \frac{1 + \sin \theta \cos \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta \cos \theta} + \frac{\sin \theta \cos \theta}{\sin \theta \cos \theta}.

8.LHS =cosecθsecθ+1= \operatorname{cosec} \theta \sec \theta + 1.

9.LHS = RHS. Hence proved.

Question 4: Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(v) cosAsinA+1cosA+sinA1=cosecA+cotA\frac{\cos A – \sin A + 1}{\cos A + \sin A – 1} = \operatorname{cosec} A + \cot A, using the identity cosec2A=1+cot2A\operatorname{cosec}^2 A = 1 + \cot^2 A.

Solution-
1.Since the required RHS contains cosecA\operatorname{cosec} A and cotA\cot A, divide the numerator (N) and denominator (D) of the LHS by sinA\sin A:
LHS =cosAsinAsinAsinA+1sinAcosAsinA+sinAsinA1sinA=cotA1+cosecAcotA+1cosecA= \frac{\frac{\cos A}{\sin A} - \frac{\sin A}{\sin A} + \frac{1}{\sin A}}{\frac{\cos A}{\sin A} + \frac{\sin A}{\sin A} - \frac{1}{\sin A}} = \frac{\cot A - 1 + \operatorname{cosec} A}{\cot A + 1 - \operatorname{cosec} A}.

2.Use the required identity cosec2Acot2A=1\operatorname{cosec}^2 A - \cot^2 A = 1 to replace '1' only in the numerator:
N=(cotA+cosecA)1=(cotA+cosecA)(cosec2Acot2A)N = (\cot A + \operatorname{cosec} A) - 1 = (\cot A + \operatorname{cosec} A) - (\operatorname{cosec}^2 A - \cot^2 A).

3.Factor the difference of squares:
N=(cotA+cosecA)(cosecAcotA)(cosecA+cotA)N = (\cot A + \operatorname{cosec} A) - (\operatorname{cosec} A - \cot A)(\operatorname{cosec} A + \cot A).

4.Factor out (cotA+cosecA)(\cot A + \operatorname{cosec} A):
N=(cotA+cosecA)[1(cosecAcotA)]N = (\cot A + \operatorname{cosec} A) [1 - (\operatorname{cosec} A - \cot A)].
N=(cotA+cosecA)[1cosecA+cotA]N = (\cot A + \operatorname{cosec} A) [1 - \operatorname{cosec} A + \cot A].

5.Substitute N back into LHS:
LHS =(cotA+cosecA)(1+cotAcosecA)(cotA+1cosecA)= \frac{(\cot A + \operatorname{cosec} A) (1 + \cot A - \operatorname{cosec} A)}{(\cot A + 1 - \operatorname{cosec} A)}.

6.Cancel the common factor (1+cotAcosecA)(1 + \cot A - \operatorname{cosec} A):
LHS =cotA+cosecA= \cot A + \operatorname{cosec} A.

7.LHS = RHS. Hence proved.

Question 4: Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(vi) 1+sinA1sinA=secA+tanA\sqrt{\frac{1 + \sin A}{1 – \sin A}} = \sec A + \tan A

Solution-
1.Start with LHS, rationalize the expression by multiplying the numerator and denominator under the square root by (1+sinA)(1 + \sin A):
LHS =1+sinA1sinA×1+sinA1+sinA= \sqrt{\frac{1 + \sin A}{1 - \sin A} \times \frac{1 + \sin A}{1 + \sin A}}.

2.LHS =(1+sinA)21sin2A= \sqrt{\frac{(1 + \sin A)^2}{1 - \sin^2 A}}.

3.Use 1sin2A=cos2A1 - \sin^2 A = \cos^2 A:
LHS =(1+sinA)2cos2A= \sqrt{\frac{(1 + \sin A)^2}{\cos^2 A}}.

4.Take the square root:
LHS =1+sinAcosA= \frac{1 + \sin A}{\cos A}.

5.Split the fraction:
LHS =1cosA+sinAcosA= \frac{1}{\cos A} + \frac{\sin A}{\cos A}.

6.Use reciprocal and quotient identities:
LHS =secA+tanA= \sec A + \tan A.

7.LHS = RHS. Hence proved.

Question 4: Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(ix) 1(cosecAsinA)(secAcosA)=tanA+cotA\frac{1}{(\operatorname{cosec} A – \sin A) (\sec A – \cos A)} = \tan A + \cot A [Hint : Simplify LHS and RHS separately]

Solution-
1.Simplify LHS, converting to sinA\sin A and cosA\cos A:
LHS =(cosecAsinA)(secAcosA)= (\operatorname{cosec} A – \sin A) (\sec A – \cos A).
LHS =(1sinAsinA)(1cosAcosA)= \left(\frac{1}{\sin A} - \sin A\right) \left(\frac{1}{\cos A} - \cos A\right).
LHS =(1sin2AsinA)(1cos2AcosA)= \left(\frac{1 - \sin^2 A}{\sin A}\right) \left(\frac{1 - \cos^2 A}{\cos A}\right).

2.Use identities 1sin2A=cos2A1 - \sin^2 A = \cos^2 A and 1cos2A=sin2A1 - \cos^2 A = \sin^2 A:
LHS =(cos2AsinA)(sin2AcosA)=cosAsinA= \left(\frac{\cos^2 A}{\sin A}\right) \left(\frac{\sin^2 A}{\cos A}\right) = \cos A \sin A. (Wait, the question is 1LHS\frac{1}{LHS})

3.Re-evaluating the LHS based on the displayed question structure in:
LHS of the equality to be proven =1(cosecAsinA)(secAcosA)= \frac{1}{(\operatorname{cosec} A – \sin A) (\sec A – \cos A)}.
LHS =1cosAsinA= \frac{1}{\cos A \sin A}.

4.Simplify RHS, converting to sinA\sin A and cosA\cos A:
RHS =tanA+cotA=sinAcosA+cosAsinA= \tan A + \cot A = \frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}.
RHS =sin2A+cos2AcosAsinA= \frac{\sin^2 A + \cos^2 A}{\cos A \sin A}.

5.Use sin2A+cos2A=1\sin^2 A + \cos^2 A = 1:
RHS =1cosAsinA= \frac{1}{\cos A \sin A}.

6.Since LHS = RHS, the identity is proved.

Question 4: Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(x) (1+tan2A1+cot2A)=(1tanA1cotA)2=tan2A\left(\frac{1 + \tan^2 A}{1 + \cot^2 A}\right) = \left(\frac{1 - \tan A}{1 - \cot A}\right)^2 = \tan^2 A

Solution-
1.Prove the first part: 1+tan2A1+cot2A=tan2A\frac{1 + \tan^2 A}{1 + \cot^2 A} = \tan^2 A.
LHS =1+tan2A1+cot2A= \frac{1 + \tan^2 A}{1 + \cot^2 A}.
Use identities 1+tan2A=sec2A1 + \tan^2 A = \sec^2 A and 1+cot2A=cosec2A1 + \cot^2 A = \operatorname{cosec}^2 A.
LHS =sec2Acosec2A=1/cos2A1/sin2A=sin2Acos2A=tan2A= \frac{\sec^2 A}{\operatorname{cosec}^2 A} = \frac{1/\cos^2 A}{1/\sin^2 A} = \frac{\sin^2 A}{\cos^2 A} = \tan^2 A.

2.Prove the second part: (1tanA1cotA)2=tan2A\left(\frac{1 - \tan A}{1 - \cot A}\right)^2 = \tan^2 A.
Simplify the base of the square, converting cotA\cot A to tanA\tan A:
1tanA1cotA=1tanA11tanA\frac{1 - \tan A}{1 - \cot A} = \frac{1 - \tan A}{1 - \frac{1}{\tan A}}.
=1tanAtanA1tanA=(1tanA)×tanAtanA1= \frac{1 - \tan A}{\frac{\tan A - 1}{\tan A}} = (1 - \tan A) \times \frac{\tan A}{\tan A - 1}.
=(tanA1)×tanAtanA1=tanA= -( \tan A - 1) \times \frac{\tan A}{\tan A - 1} = -\tan A.

3.Square the result:
(1tanA1cotA)2=(tanA)2=tan2A\left(\frac{1 - \tan A}{1 - \cot A}\right)^2 = (-\tan A)^2 = \tan^2 A.

4.Since both expressions equal tan2A\tan^2 A, the identity is proved.

Frequently Asked Questions