Inverse Trigonometric Functions Set-1
Test your knowledge on Inverse Trigonometric Functions from Mathematics, Class 12.
60
Minutes
40
Questions
1 / -0
Marking Scheme
Don't have an account? Sign up for free to save your progress and track your history.
Questions in this Quiz
Q1: $\text{cosec}^{-1} (-\frac{2}{\sqrt{3}})$
- $-\pi/3$
- $\pi/3$
- $\pi/2$
- $-\pi/2$
Q2: $\text{sec}^{-1} (2)$
- $\pi/6$
- $\pi/3$
- $2\pi/3$
- $5\pi/6$
Q3: Which of the following is the principal value branch of $\text{cosec}^{-1} x$?
- $(-\pi/2, \pi/2)$
- $(0, \pi) – \{\pi/2\}$
- $[−\pi/2, \pi/2]$
- $[−\pi/2, \pi/2] – \{0\}$
Q4: The value of $\sin [\text{cos}^{-1} (\frac{7}{25})]$ is
- $25/24$
- $25/7$
- $24/25$
- $7/24$
Q5: If $x + (1/x) = 2$ then the principal value of $\text{sin}^{-1} x$ is
- $\pi/4$
- $\pi/2$
- $\pi$
- $3\pi/2$
Q6: The value of $\text{cos}^{-1} [\text{cos}(\frac{33\pi}{5})]$ is
- $3\pi/5$
- $-3\pi/5$
- $\pi/10$
- $-\pi/10$
Q7: $\text{sin}^{-1} (-1/2)$
- $\pi/3$
- $-\pi/3$
- $\pi/6$
- $-\pi/6$
Q8: $\text{cot}^{-1} (1)$
- $\pi/3$
- $\pi/4$
- $\pi/2$
- 0
Q9: $\text{cos}^{-1} (-1/2) + 2\text{sin}^{-1} (-1/2)$
- $\pi/3$
- $2\pi/3$
- $3\pi/4$
- $5\pi/8$
Q10: $\text{cos}^{-1} (\sqrt{3}/2)$
- $5\pi/6$
- $\pi/6$
- $4\pi/9$
- $2\pi/3$
Q11: If $\text{sin}^{-1}(\frac{2a}{1+a^2}) + \text{cos}^{-1}(\frac{1−a^2}{1+a^2}) = \text{tan}^{-1}(\frac{2x}{1−x^2})$ where $a, x \in |0, 1|$ then the value of $x$ is
- 0
- $a^2$
- $a$
- $\frac{2a}{1−a^2}$
Q12: Which of the following is the principal value branch of $\text{cos}^{-1} x$?
- $[−\pi/2, \pi/2]$
- $(0, \pi)$
- $[0, \pi]$
- $(0, \pi) – \{\pi/2\}$
Q13: $\text{cosec}^{-1} (2)$
- $\pi/6$
- $2\pi/3$
- $5\pi/6$
- 0
Q14: $\text{sec}^{-1} (−2/\sqrt{3})$
- $\pi/6$
- $\pi/3$
- $5\pi/6$
- $-2\pi/3$
Q15: $\text{tan}^{-1} (\sqrt{3})$
- $\pi/6$
- $\pi/3$
- $2\pi/3$
- $5\pi/6$
Q16: If $\sin \{\sin^{-1} (1/2) + \cos^{-1} x\} = 1$, then the value of $x$ is
- $1/2$
- 0
- 1
- None of these
Q17: Solve for $x : \{x\cos(\cot^{-1} x) + \sin(\cot^{-1} x)\}^2 = \frac{51}{50}$
- $\frac{1}{\sqrt{2}}$
- $\frac{1}{5 \sqrt{2}}$
- $2\sqrt{2}$
- $5\sqrt{2}$
Q18: If $\text{sin}^{-1}(x^2 – 7x + 12) = n\pi, \forall n \in I$, then $x =$
- -2
- 4
- -3
- 5
Q19: If $\text{cos}^{-1} x + \text{sin}^{-1} x = \pi$, then the value of $x$ is
- $\frac{3}{2}$
- $\frac{1}{\sqrt{2}}$
- $\frac{\sqrt{3}}{2}$
- $\frac{2}{\sqrt{3}}$
Q20: If $\text{sin}^{-1} x – \text{cos}^{-1} x = \frac{\pi}{6}$, then $x =$
- $\frac{1}{2}$
- $\frac{\sqrt{3}}{2}$
- $-\frac{1}{2}$
- $-\frac{\sqrt{3}}{2}$
Q21: If $\text{tan}^{-1} (\cot \theta) = 2\theta$, then $\theta$ is equal to
- $\frac{\pi}{3}$
- $\frac{\pi}{4}$
- $\frac{\pi}{6}$
- None of these
Q22: $\cot(\frac{\pi}{4} – 2\cot^{-1} 3) =$
- 7
- 6
- 5
- None of these
Q23: If $\text{tan}^{-1} 3 + \text{tan}^{-1} x = \text{tan}^{-1} 8$, then $x =$
- 5
- $\frac{1}{5}$
- $\frac{5}{14}$
- $\frac{14}{5}$
Q24: If $\text{tan}^{-1} (x – 1) + \text{tan}^{-1} x + \text{tan}^{-1} (x + 1) = \text{tan}^{-1} 3x$, then the values of $x$ are
- $\pm \frac{1}{2}$
- $0, \frac{1}{2}$
- $0, -\frac{1}{2}$
- $0, \pm \frac{1}{2}$
Q25: If $6\text{sin}^{-1} (x^2 – 6x + 8.5) = \pi$, then $x$ is equal to
- 1
- 2
- 3
- 8
Q26: $\text{sin}^{-1} (1 – x) – 2\text{sin}^{-1} x = \frac{\pi}{2}$
- 0
- $1/2$
- $0, 1/2$
- $-1/2$
Q27: $2\text{tan}^{-1}(\cos x) = \text{tan}^{-1}(2\text{cosec } x)$
- 0
- $\pi/3$
- $\pi/4$
- $\pi/2$
Q28: The domain of the function defined by $f(x) = \text{sin}^{-1} \sqrt{x-1}$ is
- [-1, 1]
- none of these
Q29: The value of $\sin (2\text{tan}^{-1} (0.75))$ is equal to
- 0.75
- 1.5
- 0.96
- $\sin 1.5$
Q30: The value of expression $2 \text{sec}^{-1} 2 + \text{sin}^{-1}(\frac{1}{2})$
- $\frac{\pi}{6}$
- $\frac{5 \pi}{6}$
- $\frac{7 \pi}{6}$
- 1
Q31: The value of the expression $\tan (\frac{1}{2} \cos^{-1} \frac{2}{\sqrt{3}})$
- $2 + \sqrt{5}$
- $\sqrt{5} – 2$
- $\frac{\sqrt{5}+2}{2}$
- $5 + \sqrt{2}$
Q32: $\text{cos}^{-1}[\cos(2\cot^{-1}(\sqrt{2} – 1))] = \_\_\_\_\_\_$
- $\sqrt{2} – 1$
- $1 + \sqrt{2}$
- $\frac{\pi}{4}$
- $\frac{3 \pi}{4}$
Q33: The range of $\text{sin}^{-1} x + \text{cos}^{-1} x + \text{tan}^{-1} x$ is
- $[0, \pi]$
- $\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$
- $(0, \pi)$
- $\left[0, \frac{\pi}{2}\right]$
Q34: Find the value of $\text{sec}^2 (\text{tan}^{-1} 2) + \text{cosec}^2 (\text{cot}^{-1} 3)$
- 12
- 5
- 15
- 9
Q35: The equation $\text{sin}^{-1} x – \text{cos}^{-1} x = \text{cos}^{-1}(\frac{\sqrt{3}}{2})$ has
- unique solution
- no solution
- infinitely many solution
- none of these
Q36: The equation $2\text{cos}^{-1} x + \text{sin}^{-1} x = \frac{11 \pi}{6}$ has
- no solution
- only one solution
- two solutions
- three solutions
Q37: If $\text{tan}^{-1} 2x + \text{tan}^{-1} 3x = \frac{\pi}{4}$, then $x$ is
- $\frac{1}{6}$
- 1
- $(\frac{1}{6}, -1)$
- none of these
Q38: If $\text{tan}^{-1} x – \text{tan}^{-1} y = \text{tan}^{-1} A$, then $A$ is equal to
- $x – y$
- $x + y$
- $\frac{x-y}{1+x y}$
- $\frac{x+y}{1-x y}$
Q39: The value of $\text{cot}^{-1} 9 + \text{cosec}^{-1}(\frac{\sqrt{41}}{4})$ is given by
- 0
- $\frac{\pi}{4}$
- $\text{tan}^{-1} 2$
- $\frac{\pi}{2}$
Q40: Which of the following is the principal value branch of $\text{cosec}^{-1} x$?
- $(-\pi/2, \pi/2)$
- $[0, \pi] – \{\pi/2\}$
- $[-\pi/2, \pi/2]$
- $[-\pi/2, \pi/2] – \{0\}$