JEE MAINS 2025

Test your knowledge on All from Mixed, Class JEE.

180

Minutes

75

Questions

4 / -1

Marking Scheme

Don't have an account? Sign up for free to save your progress and track your history.

Questions in this Quiz

Q1: The number of non-empty equivalence relations on the set 1,2,3{1,2,3} is :

  • 6

  • 7

  • 5

  • 4

Q2: Let f:RRf : R → R be a twice differentiable function such that f(x+y)=f(x)f(y)f(x + y) = f(x) f(y) for all x,yRx, y ∈ R. If f(0)=4af'(0) = 4a and ff satisfies f(x)3af(x)f(x)=0f''(x) - 3af'(x) - f(x) = 0, a>0a > 0, then the area of the region R=(x,y)0yf(ax),0x2R = {(x,y) | 0 ≤ y ≤ f(ax), 0 ≤ x ≤ 2} is :

  • e21e^2 - 1

  • e4+1e^4 + 1

  • e41e^4 - 1

  • e2+1e^2 + 1

Q3: Let the triangle PQR be the image of the triangle with vertices (1,3)(1,3), (3,1)(3,1) and (2,4)(2, 4) in the line x+2y=2x + 2y = 2. If the centroid of ΔPQRΔPQR is the point (α,β)(α, β), then 15(αβ)15(α - β) is equal to :

  • 24

  • 19

  • 21

  • 22

Q4: Let z1,z2z_1, z_2 and z3z_3 be three complex numbers on the circle z=1|z| = 1 with arg(z1)=π/4arg(z_1) = -π/4, arg(z2)=0arg(z_2) = 0 and arg(z3)=π/4arg(z_3) = π/4. If z1overlinez2+z2overlinez3+z3overlinez12=α+β2|z_1overline{z}_2 + z_2overline{z}_3 + z_3overline{z}_1|^2 = α + β√2, α,βZα, β ∈ Z, then the value of α2+β2α^2 + β^2 is :

  • 24

  • 41

  • 31

  • 29

Q5: Using the principal values of the inverse trigonometric functions the sum of the maximum and the minimum values of 16(sec1x)2+(cosec1x)316(sec^{-1}x)^2 + (cosec^{-1}x)^3 is:

  • 24π224π^2

  • 18π218π^2

  • 31π231π^2

  • 22π222π^2

Q6: A coin is tossed three times. Let X denote the number of times a tail follows a head. If μμ and σ2σ^2 denote the mean and variance of X, then the value of 64(μ+σ2)64(μ + σ^2) is:

  • 51

  • 48

  • 32

  • 64

Q7: Let a1,a2,a3,...,ana_1, a_2, a_3, ..., a_n be a G.P. of increasing positive terms. If a1a3=28a_1 a_3 = 28 and a2+a4=29a_2 + a_4 = 29, then a5a_5 is equal to

  • 628

  • 526

  • 784

  • 812

Q8: Let L1:(x1)/2=(y2)/3=(z3)/4L_1: (x-1)/2 = (y-2)/3 = (z-3)/4 and L2:(x2)/3=(y4)/4=(z5)/5L_2: (x-2)/3 = (y-4)/4 = (z-5)/5 be two lines. Then which of the following points lies on the line of the shortest distance between L1L_1 and L2L_2?

  • (5/3,7,1)(-5/3, -7, 1)

  • (2,3,1/3)(2, 3, 1/3)

  • (8/3,1,1/3)(8/3, -1, 1/3)

  • (14/3,3,22/3)(14/3, -3, 22/3)

Q9: The product of all solutions of the equation e5(lnx)2+3=x8e^{5(ln x)^2 + 3} = x^8, x>0x > 0, is:

  • e85e^{85}

  • e65e^{65}

  • e2e^2

  • ee

Q10: If Σi=1nTi=[(2n1)(2n+1)(2n+3)(2n+5)]/64Σ_{i=1}^{n} T_i = [(2n-1)(2n+1)(2n+3)(2n+5)]/64, then limnΣi=1n(1/Ti)lim_{n→∞} Σ_{i=1}^{n} (1/T_i) is equal to:

  • 1

  • 0

  • 2/32/3

  • 1/31/3

...and 65 more questions.