JEE Main 2024 8 Apr Shift 2

Test your knowledge on All from Mixed, Class JEE.

180

Minutes

90

Questions

4 / -1

Marking Scheme

Don't have an account? Sign up for free to save your progress and track your history.

Questions in this Quiz

Q1: If the image of the point (4,5)(-4,5) in the line x+2y=2x + 2y = 2 lies on the circle (x+4)2+(y3)2=r2(x + 4)^2 + (y - 3)^2 = r^2, then rr is equal to:

  • 1

  • 2

  • 75

  • 3

Q2: Let a=i^+2j^+3k^\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}, b=2i^+3j^5k^\vec{b} = 2\hat{i} + 3\hat{j} - 5\hat{k}, and c=3i^j^+λk^\vec{c} = 3\hat{i} - \hat{j} + \lambda\hat{k} be three vectors. Let r\vec{r} be a unit vector along b+c\vec{b} + \vec{c}. If ra=3\vec{r} \cdot \vec{a} = 3, then 3λ3\lambda is equal to:

  • 27

  • 25

  • 25

  • 21

Q3: If αa,βb,γc\alpha \neq a, \beta \neq b, \gamma \neq c and αbcaβcabγ=0\begin{vmatrix} \alpha & b & c \\ a & \beta & c \\ a & b & \gamma \end{vmatrix} = 0, then aαa+bβb+γγc\frac{a}{\alpha - a} + \frac{b}{\beta - b} + \frac{\gamma}{\gamma - c} is equal to:

  • 2

  • 3

  • 0

  • 1

Q4: In an increasing geometric progression of positive terms, the sum of the second and sixth terms is 703\frac{70}{3} and the product of the third and fifth terms is 49. Then the sum of the 4th, 6th, and 8th terms is:

  • 96

  • 78

  • 91

  • 84

Q5: The number of ways five alphabets can be chosen from the alphabets of the word MATHEMATICS, where the chosen alphabets are not necessarily distinct, is equal to:

  • 175

  • 181

  • 177

  • 179

Q6: The sum of all possible values of θ[π,2π]\theta\in[-\pi,2\pi], for which 1+icosθ12icosθ\frac{1+i\cos\theta}{1-2i\cos\theta} is purely imaginary, is equal to:

  • 2π2\pi

  • 3π3\pi

  • 5π5\pi

  • 4π4\pi

Q7: If the system of equations x+4yz=λx + 4y - z = \lambda, 7x+9y+μz=37x + 9y + \mu z = -3, 5x+y+2z=15x + y + 2z = -1 has infinitely many solutions, then 2μ+3λ2\mu + 3\lambda is equal to:

  • 2

  • 3-3

  • 3

  • 2-2

Q8: If the shortest distance between the lines xλ2=y43=z34\frac{x - \lambda}{2} = \frac{y - 4}{3} = \frac{z - 3}{4} and x24=y46=z78\frac{x - 2}{4} = \frac{y - 4}{6} = \frac{z - 7}{8} is 1329\frac{13}{\sqrt{29}}, then a value of λ\lambda is:

  • 1325\frac{-13}{25}

  • 1325\frac{13}{25}

  • 1

  • -1

Q9: If the value of 3cos36+5sin185cos363sin18=a5bc\frac{3 \cos 36^\circ + 5 \sin 18^\circ}{5 \cos 36^\circ - 3 \sin 18^\circ} = \frac{a \sqrt{5} - b}{c}, where a,b,ca, b, c are natural numbers and gcd(a,c)=1\gcd(a, c) = 1, then a+b+ca + b + c is equal to:

  • 50

  • 40

  • 52

  • 54

Q10: Let y=y(x)y=y(x) be the solution curve of the differential equation secydydx+2xsiny=x3cosy\sec y\frac{dy}{dx}+2x\sin y=x^{3}\cos y, with the condition y(1)=0y(1)=0. Then y(3)y(\sqrt{3}) is equal to:

  • π3\frac{\pi}{3}

  • π6\frac{\pi}{6}

  • π4\frac{\pi}{4}

  • π12\frac{\pi}{12}

...and 80 more questions.