Back to Maths

NCERT Solutions For Class 11 Maths: Trigonometric Functions

October 26, 2025

Chapter 3: Trigonometric Functions

- Class 11 Mathematics

Summary of the Chapter

This chapter provides a comprehensive introduction to trigonometric functions, moving from the right-angled triangle definitions to a more general circular function approach.

Key concepts covered:

  • Angles: Measurement of angles in degrees and radians. The relationship is 2π radians=3602\pi \text{ radians} = 360^\circ, or π radians=180\pi \text{ radians} = 180^\circ.
  • Radian Measure: The angle subtended at the center of a circle by an arc equal in length to the radius. The formula relating arc length (ll), radius (rr), and central angle (θ\theta in radians) is l=rθl = r\theta.
  • Trigonometric Functions: Defined using a unit circle (a circle with radius 1). For a point P(x,y)P(x, y) on the unit circle corresponding to an angle θ\theta, cosθ=x\cos \theta = x and sinθ=y\sin \theta = y.
  • Six Functions: tanθ=y/x\tan \theta = y/x, cscθ=1/y\csc \theta = 1/y, secθ=1/x\sec \theta = 1/x, and cotθ=x/y\cot \theta = x/y.
  • Signs in Quadrants (ASTC Rule):
    • Quadrant I: All functions are positive.
    • Quadrant II: sin\sin and csc\csc are positive.
    • Quadrant III: tan\tan and cot\cot are positive.
    • Quadrant IV: cos\cos and sec\sec are positive.
  • Domain and Range: The domain and range for all six trigonometric functions are established. For example, the domain of sinθ\sin \theta is all real numbers (RR) and its range is [1,1][-1, 1].
  • Fundamental Identities:
    • sin2x+cos2x=1\sin^2 x + \cos^2 x = 1
    • 1+tan2x=sec2x1 + \tan^2 x = \sec^2 x
    • 1+cot2x=csc2x1 + \cot^2 x = \csc^2 x
  • Periodicity: Trigonometric functions are periodic. sin\sin and cos\cos have a period of 2π2\pi, while tan\tan has a period of π\pi.
  • Sum and Difference Formulas: Formulas for cos(x±y)\cos(x \pm y), sin(x±y)\sin(x \pm y), and tan(x±y)\tan(x \pm y) are introduced, which are fundamental for further derivations.
  • Double-Angle and Half-Angle Formulas: Formulas like cos2x=cos2xsin2x\cos 2x = \cos^2 x - \sin^2 x, sin2x=2sinxcosx\sin 2x = 2\sin x \cos x, and others are derived.
  • Trigonometric Equations: The concepts of principal solutions (solutions in the interval [0,2π)[0, 2\pi)) and general solutions (expressions that give all possible solutions) are introduced.

NCERT Textbook Questions and Answers

Exercise 3.1

Question 1: Find the radian measures corresponding to the following degree measures:
(i) 2525^\circ
(ii) 4730-47^\circ 30'
(iii) 240240^\circ
(iv) 520520^\circ

Answer-
We know that 180=π180^\circ = \pi radians. Therefore, 1=π1801^\circ = \frac{\pi}{180} radians.

(i) 25=25×π180 radians=5π36 radians25^\circ = 25 \times \frac{\pi}{180} \text{ radians} = \frac{5\pi}{36} \text{ radians}

(ii) 4730=473060=47.5=952-47^\circ 30' = -47 \frac{30}{60}^\circ = -47.5^\circ = -\frac{95}{2}^\circ
952=952×π180 radians=192×π36 radians=19π72 radians-\frac{95}{2}^\circ = -\frac{95}{2} \times \frac{\pi}{180} \text{ radians} = -\frac{19}{2} \times \frac{\pi}{36} \text{ radians} = -\frac{19\pi}{72} \text{ radians}

(iii) 240=240×π180 radians=4π3 radians240^\circ = 240 \times \frac{\pi}{180} \text{ radians} = \frac{4\pi}{3} \text{ radians}

(iv) 520=520×π180 radians=26π9 radians520^\circ = 520 \times \frac{\pi}{180} \text{ radians} = \frac{26\pi}{9} \text{ radians}

Question 2: Find the degree measures corresponding to the following radian measures (Use π=22/7\pi = 22/7).
(i) 11/1611/16
(ii) 4-4
(iii) 5π/35\pi/3
(iv) 7π/67\pi/6

Answer-
We know that π radians=180\pi \text{ radians} = 180^\circ. Therefore, 1 radian=180π1 \text{ radian} = \frac{180}{\pi}^\circ.

(i) 1116 radians=1116×180π=1116×18022/7=1116×180×722\frac{11}{16} \text{ radians} = \frac{11}{16} \times \frac{180}{\pi}^\circ = \frac{11}{16} \times \frac{180}{22/7}^\circ = \frac{11}{16} \times \frac{180 \times 7}{22}^\circ
=116×180×72=116×90×7=45×78=3158= \frac{1}{16} \times \frac{180 \times 7}{2}^\circ = \frac{1}{16} \times 90 \times 7^\circ = \frac{45 \times 7}{8}^\circ = \frac{315}{8}^\circ
3158=3938=39+38×60=39+452=39+2212\frac{315}{8}^\circ = 39 \frac{3}{8}^\circ = 39^\circ + \frac{3}{8} \times 60' = 39^\circ + \frac{45}{2}' = 39^\circ + 22 \frac{1}{2}'
=3922+12×60=392230= 39^\circ 22' + \frac{1}{2} \times 60'' = 39^\circ 22' 30''

(ii) 4 radians=4×180π=4×18022/7=4×180×722=2×180×711-4 \text{ radians} = -4 \times \frac{180}{\pi}^\circ = -4 \times \frac{180}{22/7}^\circ = \frac{-4 \times 180 \times 7}{22}^\circ = \frac{-2 \times 180 \times 7}{11}^\circ
=252011=229111=229111×60=2295511= \frac{-2520}{11}^\circ = -229 \frac{1}{11}^\circ = -229^\circ - \frac{1}{11} \times 60' = -229^\circ - 5 \frac{5}{11}'
=2295511×60=229530011229527= -229^\circ 5' - \frac{5}{11} \times 60'' = -229^\circ 5' - \frac{300}{11}'' \approx -229^\circ 5' 27''
(Note: 229527229^\circ 5' 27'' is also acceptable if taken as positive conversion and adding negative sign)

(iii) 5π3 radians=5π3×180π=5×60=300\frac{5\pi}{3} \text{ radians} = \frac{5\pi}{3} \times \frac{180}{\pi}^\circ = 5 \times 60^\circ = 300^\circ

(iv) 7π6 radians=7π6×180π=7×30=210\frac{7\pi}{6} \text{ radians} = \frac{7\pi}{6} \times \frac{180}{\pi}^\circ = 7 \times 30^\circ = 210^\circ

Question 3: A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Answer-
Revolutions in 1 minute (60 seconds) = 360
Revolutions in 1 second = 36060=6\frac{360}{60} = 6
Angle turned in 1 revolution = 2π2\pi radians
Angle turned in 6 revolutions = 6×2π=12π6 \times 2\pi = 12\pi radians
The wheel turns 12π12\pi radians in one second.

Question 4: Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm (Use π=22/7\pi = 22/7).

Answer-
Given: radius r=100r = 100 cm, arc length l=22l = 22 cm.
We use the formula θ=lr\theta = \frac{l}{r}, where θ\theta is in radians.
θ=22100 radians=1150 radians\theta = \frac{22}{100} \text{ radians} = \frac{11}{50} \text{ radians}
Now, convert θ\theta to degrees:
θ in degrees=1150×180π=1150×18022/7=1150×180×722\theta \text{ in degrees} = \frac{11}{50} \times \frac{180}{\pi}^\circ = \frac{11}{50} \times \frac{180}{22/7}^\circ = \frac{11}{50} \times \frac{180 \times 7}{22}^\circ
=150×180×72=150×90×7=9×75=635= \frac{1}{50} \times \frac{180 \times 7}{2}^\circ = \frac{1}{50} \times 90 \times 7^\circ = \frac{9 \times 7}{5}^\circ = \frac{63}{5}^\circ
635=1235=12+35×60=12+3×12=1236\frac{63}{5}^\circ = 12 \frac{3}{5}^\circ = 12^\circ + \frac{3}{5} \times 60' = 12^\circ + 3 \times 12' = 12^\circ 36'

Question 5: In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of the minor arc of the chord.

Answer-
Diameter = 40 cm, so radius r=20r = 20 cm.
Length of chord = 20 cm.
The triangle formed by the two radii and the chord has all three sides equal to 20 cm.
Therefore, it is an equilateral triangle.
The angle θ\theta subtended by the chord at the center is 6060^\circ.
To use l=rθl = r\theta, we must convert θ\theta to radians:
θ=60=60×π180=π3\theta = 60^\circ = 60 \times \frac{\pi}{180} = \frac{\pi}{3} radians.
Length of the minor arc l=rθ=20×π3=20π3l = r\theta = 20 \times \frac{\pi}{3} = \frac{20\pi}{3} cm.

Question 6: If in two circles, arcs of the same length subtend angles 6060^\circ and 7575^\circ at the centre, find the ratio of their radii.

Answer-
Let the radii be r1r_1 and r2r_2.
Let the arc length be ll for both.
Given θ1=60\theta_1 = 60^\circ and θ2=75\theta_2 = 75^\circ.
We must convert angles to radians:
θ1=60=60×π180=π3\theta_1 = 60^\circ = 60 \times \frac{\pi}{180} = \frac{\pi}{3} radians
θ2=75=75×π180=5π12\theta_2 = 75^\circ = 75 \times \frac{\pi}{180} = \frac{5\pi}{12} radians
We know l=r1θ1l = r_1 \theta_1 and l=r2θ2l = r_2 \theta_2.
Therefore, r1θ1=r2θ2r_1 \theta_1 = r_2 \theta_2
r1(π3)=r2(5π12)r_1 \left(\frac{\pi}{3}\right) = r_2 \left(\frac{5\pi}{12}\right)
r13=5r212\frac{r_1}{3} = \frac{5r_2}{12}
r1r2=512×3=1512=54\frac{r_1}{r_2} = \frac{5}{12} \times 3 = \frac{15}{12} = \frac{5}{4}
The ratio of their radii r1:r2=5:4r_1 : r_2 = 5 : 4.

Question 7: Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length:
(i) 10 cm
(ii) 15 cm
(iii) 21 cm

Answer-
The length of the pendulum is the radius r=75r = 75 cm. The arc length is ll.
The angle in radians is θ=lr\theta = \frac{l}{r}.

(i) l=10l = 10 cm. θ=1075=215\theta = \frac{10}{75} = \frac{2}{15} radians.

(ii) l=15l = 15 cm. θ=1575=15\theta = \frac{15}{75} = \frac{1}{5} radians.

(iii) l=21l = 21 cm. θ=2175=725\theta = \frac{21}{75} = \frac{7}{25} radians.


Exercise 3.2

Question 1: Find the values of other five trigonometric functions if cosx=1/2\cos x = -1/2, xx lies in the third quadrant.

Answer-
Given cosx=1/2\cos x = -1/2 and xx is in Quadrant 3.
In Q3, sinx\sin x is negative and tanx\tan x is positive.

  1. secx=1cosx=11/2=2\sec x = \frac{1}{\cos x} = \frac{1}{-1/2} = -2

  2. sin2x+cos2x=1\sin^2 x + \cos^2 x = 1
    sin2x=1cos2x=1(1/2)2=11/4=3/4\sin^2 x = 1 - \cos^2 x = 1 - (-1/2)^2 = 1 - 1/4 = 3/4
    sinx=32\sin x = -\frac{\sqrt{3}}{2} (since xx is in Q3)

  3. cscx=1sinx=13/2=23\csc x = \frac{1}{\sin x} = \frac{1}{-\sqrt{3}/2} = -\frac{2}{\sqrt{3}}

  4. tanx=sinxcosx=3/21/2=3\tan x = \frac{\sin x}{\cos x} = \frac{-\sqrt{3}/2}{-1/2} = \sqrt{3}

  5. cotx=1tanx=13\cot x = \frac{1}{\tan x} = \frac{1}{\sqrt{3}}

Question 2: Find the values of other five trigonometric functions if sinx=3/5\sin x = 3/5, xx lies in second quadrant.

Answer-
Given sinx=3/5\sin x = 3/5 and xx is in Quadrant 2.
In Q2, cosx\cos x is negative and tanx\tan x is negative.

  1. cscx=1sinx=13/5=53\csc x = \frac{1}{\sin x} = \frac{1}{3/5} = \frac{5}{3}

  2. sin2x+cos2x=1\sin^2 x + \cos^2 x = 1
    cos2x=1sin2x=1(3/5)2=19/25=16/25\cos^2 x = 1 - \sin^2 x = 1 - (3/5)^2 = 1 - 9/25 = 16/25
    cosx=45\cos x = -\frac{4}{5} (since xx is in Q2)

  3. secx=1cosx=14/5=54\sec x = \frac{1}{\cos x} = \frac{1}{-4/5} = -\frac{5}{4}

  4. tanx=sinxcosx=3/54/5=34\tan x = \frac{\sin x}{\cos x} = \frac{3/5}{-4/5} = -\frac{3}{4}

  5. cotx=1tanx=13/4=43\cot x = \frac{1}{\tan x} = \frac{1}{-3/4} = -\frac{4}{3}

Question 3: Find the values of other five trigonometric functions if cotx=3/4\cot x = 3/4, xx lies in third quadrant.

Answer-
Given cotx=3/4\cot x = 3/4 and xx is in Quadrant 3.
In Q3, sinx\sin x is negative, cosx\cos x is negative, and tanx\tan x is positive.

  1. tanx=1cotx=13/4=43\tan x = \frac{1}{\cot x} = \frac{1}{3/4} = \frac{4}{3}

  2. 1+cot2x=csc2x1 + \cot^2 x = \csc^2 x
    csc2x=1+(3/4)2=1+9/16=25/16\csc^2 x = 1 + (3/4)^2 = 1 + 9/16 = 25/16
    cscx=54\csc x = -\frac{5}{4} (since xx is in Q3)

  3. sinx=1cscx=15/4=45\sin x = \frac{1}{\csc x} = \frac{1}{-5/4} = -\frac{4}{5}

  4. 1+tan2x=sec2x1 + \tan^2 x = \sec^2 x
    sec2x=1+(4/3)2=1+16/9=25/9\sec^2 x = 1 + (4/3)^2 = 1 + 16/9 = 25/9
    secx=53\sec x = -\frac{5}{3} (since xx is in Q3)

  5. cosx=1secx=15/3=35\cos x = \frac{1}{\sec x} = \frac{1}{-5/3} = -\frac{3}{5}

Question 4: Find the values of other five trigonometric functions if secx=13/5\sec x = 13/5, xx lies in fourth quadrant.

Answer-
Given secx=13/5\sec x = 13/5 and xx is in Quadrant 4.
In Q4, sinx\sin x is negative, cosx\cos x is positive, and tanx\tan x is negative.

  1. cosx=1secx=113/5=513\cos x = \frac{1}{\sec x} = \frac{1}{13/5} = \frac{5}{13}

  2. sin2x+cos2x=1\sin^2 x + \cos^2 x = 1
    sin2x=1cos2x=1(5/13)2=125/169=144/169\sin^2 x = 1 - \cos^2 x = 1 - (5/13)^2 = 1 - 25/169 = 144/169
    sinx=1213\sin x = -\frac{12}{13} (since xx is in Q4)

  3. cscx=1sinx=112/13=1312\csc x = \frac{1}{\sin x} = \frac{1}{-12/13} = -\frac{13}{12}

  4. tanx=sinxcosx=12/135/13=125\tan x = \frac{\sin x}{\cos x} = \frac{-12/13}{5/13} = -\frac{12}{5}

  5. cotx=1tanx=112/5=512\cot x = \frac{1}{\tan x} = \frac{1}{-12/5} = -\frac{5}{12}

Question 5: Find the values of other five trigonometric functions if tanx=5/12\tan x = -5/12, xx lies in second quadrant.

Answer-
Given tanx=5/12\tan x = -5/12 and xx is in Quadrant 2.
In Q2, sinx\sin x is positive, cosx\cos x is negative.

  1. cotx=1tanx=15/12=125\cot x = \frac{1}{\tan x} = \frac{1}{-5/12} = -\frac{12}{5}

  2. 1+tan2x=sec2x1 + \tan^2 x = \sec^2 x
    sec2x=1+(5/12)2=1+25/144=169/144\sec^2 x = 1 + (-5/12)^2 = 1 + 25/144 = 169/144
    secx=1312\sec x = -\frac{13}{12} (since xx is in Q2)

  3. cosx=1secx=113/12=1213\cos x = \frac{1}{\sec x} = \frac{1}{-13/12} = -\frac{12}{13}

  4. We know tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}, so sinx=tanx×cosx\sin x = \tan x \times \cos x
    sinx=(512)×(1213)=513\sin x = \left(-\frac{5}{12}\right) \times \left(-\frac{12}{13}\right) = \frac{5}{13}

  5. cscx=1sinx=15/13=135\csc x = \frac{1}{\sin x} = \frac{1}{5/13} = \frac{13}{5}

Question 6: Find the value of the trigonometric function sin765\sin 765^\circ

Answer-
We can write 765765^\circ as n×360+θn \times 360^\circ + \theta.
765=2×360+45=720+45765^\circ = 2 \times 360^\circ + 45^\circ = 720^\circ + 45^\circ
sin(765)=sin(2×360+45)\sin(765^\circ) = \sin(2 \times 360^\circ + 45^\circ)
Since sin(2nπ+θ)=sinθ\sin(2n\pi + \theta) = \sin \theta,
sin(765)=sin(45)=12\sin(765^\circ) = \sin(45^\circ) = \frac{1}{\sqrt{2}}

Question 7: Find the value of the trigonometric function csc(1410)\csc (-1410^\circ)

Answer-
We know csc(θ)=csc(θ)\csc(-\theta) = -\csc(\theta).
So, csc(1410)=csc(1410)\csc(-1410^\circ) = -\csc(1410^\circ).
Now, we write 14101410^\circ as n×360+θn \times 360^\circ + \theta.
1410=3×360+330=1080+3301410^\circ = 3 \times 360^\circ + 330^\circ = 1080^\circ + 330^\circ
csc(1410)=csc(3×360+330)=csc(330)-\csc(1410^\circ) = -\csc(3 \times 360^\circ + 330^\circ) = -\csc(330^\circ)
We can write csc(330)\csc(330^\circ) as csc(36030)\csc(360^\circ - 30^\circ).
In Q4, csc\csc is negative, so csc(36030)=csc(30)=2\csc(360^\circ - 30^\circ) = -\csc(30^\circ) = -2.
Therefore, csc(330)=(2)=2-\csc(330^\circ) = -(-2) = 2.

Alternatively:
1410=4×36030=1440301410^\circ = 4 \times 360^\circ - 30^\circ = 1440^\circ - 30^\circ
csc(1410)=csc(4×36030)=csc(30)-\csc(1410^\circ) = -\csc(4 \times 360^\circ - 30^\circ) = -\csc(-30^\circ)
=(csc(30))=csc(30)=2= -(-\csc(30^\circ)) = \csc(30^\circ) = 2.
So, csc(1410)=2\csc(-1410^\circ) = 2.

Question 8: Find the value of the trigonometric function tan(19π/3)\tan (19\pi/3)

Answer-
We can write 19π3\frac{19\pi}{3} as 6π+π3=3×2π+π36\pi + \frac{\pi}{3} = 3 \times 2\pi + \frac{\pi}{3}.
tan(19π/3)=tan(6π+π/3)\tan(19\pi/3) = \tan(6\pi + \pi/3)
Since tan(2nπ+θ)=tanθ\tan(2n\pi + \theta) = \tan \theta,
tan(19π/3)=tan(π/3)=3\tan(19\pi/3) = \tan(\pi/3) = \sqrt{3}

Question 9: Find the value of the trigonometric function sin(11π/3)\sin (-11\pi/3)

Answer-
We know sin(θ)=sin(θ)\sin(-\theta) = -\sin(\theta).
So, sin(11π/3)=sin(11π/3)\sin(-11\pi/3) = -\sin(11\pi/3).
We can write 11π3\frac{11\pi}{3} as 4ππ3=2×2ππ34\pi - \frac{\pi}{3} = 2 \times 2\pi - \frac{\pi}{3}.
sin(11π/3)=sin(4ππ/3)-\sin(11\pi/3) = -\sin(4\pi - \pi/3)
Since sin(2nπ+θ)=sinθ\sin(2n\pi + \theta) = \sin \theta, sin(4ππ/3)=sin(π/3)\sin(4\pi - \pi/3) = \sin(-\pi/3).
sin(π/3)=sin(π/3)=32\sin(-\pi/3) = -\sin(\pi/3) = -\frac{\sqrt{3}}{2}.
So, sin(11π/3)=(32)=32\sin(-11\pi/3) = -(-\frac{\sqrt{3}}{2}) = \frac{\sqrt{3}}{2}.

Question 10: Find the value of the trigonometric function cot(15π/4)\cot (-15\pi/4)

Answer-
We know cot(θ)=cot(θ)\cot(-\theta) = -\cot(\theta).
So, cot(15π/4)=cot(15π/4)\cot(-15\pi/4) = -\cot(15\pi/4).
We can write 15π4\frac{15\pi}{4} as 4ππ4=2×2ππ44\pi - \frac{\pi}{4} = 2 \times 2\pi - \frac{\pi}{4}.
cot(15π/4)=cot(4ππ/4)-\cot(15\pi/4) = -\cot(4\pi - \pi/4)
Since cot(2nπ+θ)=cotθ\cot(2n\pi + \theta) = \cot \theta, cot(4ππ/4)=cot(π/4)\cot(4\pi - \pi/4) = \cot(-\pi/4).
cot(π/4)=cot(π/4)=1\cot(-\pi/4) = -\cot(\pi/4) = -1.
So, cot(15π/4)=(1)=1\cot(-15\pi/4) = -(-1) = 1.


Exercise 3.3

Question 1: Prove that sin2π6+cos2π3tan2π4=12\sin^2 \frac{\pi}{6} + \cos^2 \frac{\pi}{3} - \tan^2 \frac{\pi}{4} = -\frac{1}{2}

Answer-
We take the Left Hand Side (LHS):
LHS = sin2π6+cos2π3tan2π4\sin^2 \frac{\pi}{6} + \cos^2 \frac{\pi}{3} - \tan^2 \frac{\pi}{4}
We know the values:
sin(π/6)=1/2\sin(\pi/6) = 1/2
cos(π/3)=1/2\cos(\pi/3) = 1/2
tan(π/4)=1\tan(\pi/4) = 1
Substitute these values into the LHS:
LHS = (1/2)2+(1/2)2(1)2(1/2)^2 + (1/2)^2 - (1)^2
LHS = 1/4+1/411/4 + 1/4 - 1
LHS = 1/21=1/21/2 - 1 = -1/2
LHS = RHS (Right Hand Side)
Hence, proved.

Question 2: Prove that 2sin2π6+csc27π6cos2π3=322\sin^2 \frac{\pi}{6} + \csc^2 \frac{7\pi}{6} \cos^2 \frac{\pi}{3} = \frac{3}{2}

Answer-
LHS = 2sin2π6+csc27π6cos2π32\sin^2 \frac{\pi}{6} + \csc^2 \frac{7\pi}{6} \cos^2 \frac{\pi}{3}
First, find the value of csc(7π/6)\csc(7\pi/6):
csc(7π/6)=csc(π+π/6)\csc(7\pi/6) = \csc(\pi + \pi/6)
Since csc\csc is negative in Quadrant 3, csc(π+θ)=csc(θ)\csc(\pi + \theta) = -\csc(\theta).
csc(7π/6)=csc(π/6)=2\csc(7\pi/6) = -\csc(\pi/6) = -2
Now substitute all values into the LHS:
sin(π/6)=1/2\sin(\pi/6) = 1/2
cos(π/3)=1/2\cos(\pi/3) = 1/2
csc(7π/6)=2\csc(7\pi/6) = -2
LHS = 2(1/2)2+(2)2(1/2)22(1/2)^2 + (-2)^2 (1/2)^2
LHS = 2(1/4)+(4)(1/4)2(1/4) + (4)(1/4)
LHS = 1/2+1=3/21/2 + 1 = 3/2
LHS = RHS
Hence, proved.

Question 3: Prove that cot2π6+csc5π6+3tan2π6=6\cot^2 \frac{\pi}{6} + \csc \frac{5\pi}{6} + 3\tan^2 \frac{\pi}{6} = 6

Answer-
LHS = cot2π6+csc5π6+3tan2π6\cot^2 \frac{\pi}{6} + \csc \frac{5\pi}{6} + 3\tan^2 \frac{\pi}{6}
First, find the value of csc(5π/6)\csc(5\pi/6):
csc(5π/6)=csc(ππ/6)\csc(5\pi/6) = \csc(\pi - \pi/6)
Since csc\csc is positive in Quadrant 2, csc(πθ)=csc(θ)\csc(\pi - \theta) = \csc(\theta).
csc(5π/6)=csc(π/6)=2\csc(5\pi/6) = \csc(\pi/6) = 2
Now substitute all values into the LHS:
cot(π/6)=3\cot(\pi/6) = \sqrt{3}
tan(π/6)=1/3\tan(\pi/6) = 1/\sqrt{3}
csc(5π/6)=2\csc(5\pi/6) = 2
LHS = (3)2+2+3(1/3)2(\sqrt{3})^2 + 2 + 3(1/\sqrt{3})^2
LHS = 3+2+3(1/3)3 + 2 + 3(1/3)
LHS = 3+2+1=63 + 2 + 1 = 6
LHS = RHS
Hence, proved.

Question 4: Prove that 2sin23π4+2cos2π4+2sec2π3=102\sin^2 \frac{3\pi}{4} + 2\cos^2 \frac{\pi}{4} + 2\sec^2 \frac{\pi}{3} = 10

Answer-
LHS = 2sin23π4+2cos2π4+2sec2π32\sin^2 \frac{3\pi}{4} + 2\cos^2 \frac{\pi}{4} + 2\sec^2 \frac{\pi}{3}
First, find the value of sin(3π/4)\sin(3\pi/4):
sin(3π/4)=sin(ππ/4)\sin(3\pi/4) = \sin(\pi - \pi/4)
Since sin\sin is positive in Quadrant 2, sin(πθ)=sin(θ)\sin(\pi - \theta) = \sin(\theta).
sin(3π/4)=sin(π/4)=1/2\sin(3\pi/4) = \sin(\pi/4) = 1/\sqrt{2}
Now substitute all values into the LHS:
sin(3π/4)=1/2\sin(3\pi/4) = 1/\sqrt{2}
cos(π/4)=1/2\cos(\pi/4) = 1/\sqrt{2}
sec(π/3)=2\sec(\pi/3) = 2
LHS = 2(1/2)2+2(1/2)2+2(2)22(1/\sqrt{2})^2 + 2(1/\sqrt{2})^2 + 2(2)^2
LHS = 2(1/2)+2(1/2)+2(4)2(1/2) + 2(1/2) + 2(4)
LHS = 1+1+8=101 + 1 + 8 = 10
LHS = RHS
Hence, proved.

Question 5: Find the value of: (i) sin75\sin 75^\circ (ii) tan15\tan 15^\circ

Answer-
(i) sin75\sin 75^\circ
We can write 75=45+3075^\circ = 45^\circ + 30^\circ
sin(75)=sin(45+30)\sin(75^\circ) = \sin(45^\circ + 30^\circ)
Using the formula sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B:
sin(75)=sin(45)cos(30)+cos(45)sin(30)\sin(75^\circ) = \sin(45^\circ)\cos(30^\circ) + \cos(45^\circ)\sin(30^\circ)
sin(75)=(1/2)(3/2)+(1/2)(1/2)\sin(75^\circ) = (1/\sqrt{2})(\sqrt{3}/2) + (1/\sqrt{2})(1/2)
sin(75)=322+122=3+122\sin(75^\circ) = \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}}
Rationalizing the denominator: (3+1)22×22=6+24\frac{(\sqrt{3} + 1)}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{6} + \sqrt{2}}{4}
sin75=6+24\sin 75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}

(ii) tan15\tan 15^\circ
We can write 15=453015^\circ = 45^\circ - 30^\circ
tan(15)=tan(4530)\tan(15^\circ) = \tan(45^\circ - 30^\circ)
Using the formula tan(AB)=tanAtanB1+tanAtanB\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}:
tan(15)=tan45tan301+tan45tan30\tan(15^\circ) = \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ}
tan(15)=11/31+1(1/3)=(31)/3(3+1)/3\tan(15^\circ) = \frac{1 - 1/\sqrt{3}}{1 + 1 \cdot (1/\sqrt{3})} = \frac{( \sqrt{3} - 1 ) / \sqrt{3}}{( \sqrt{3} + 1 ) / \sqrt{3}}
tan(15)=313+1\tan(15^\circ) = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}
Rationalizing the denominator:
tan(15)=313+1×3131=(31)2(3)212\tan(15^\circ) = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \times \frac{\sqrt{3} - 1}{\sqrt{3} - 1} = \frac{(\sqrt{3} - 1)^2}{(\sqrt{3})^2 - 1^2}
tan(15)=323+131=4232=23\tan(15^\circ) = \frac{3 - 2\sqrt{3} + 1}{3 - 1} = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3}
tan15=23\tan 15^\circ = 2 - \sqrt{3}

Question 6: Prove that cos(π4x)cos(π4y)sin(π4x)sin(π4y)=sin(x+y)\cos(\frac{\pi}{4} - x)\cos(\frac{\pi}{4} - y) - \sin(\frac{\pi}{4} - x)\sin(\frac{\pi}{4} - y) = \sin(x + y)

Answer-
LHS = cos(π4x)cos(π4y)sin(π4x)sin(π4y)\cos(\frac{\pi}{4} - x)\cos(\frac{\pi}{4} - y) - \sin(\frac{\pi}{4} - x)\sin(\frac{\pi}{4} - y)
This expression is in the form cosAcosBsinAsinB\cos A \cos B - \sin A \sin B, which is equal to cos(A+B)\cos(A + B).
Let A=(π4x)A = (\frac{\pi}{4} - x) and B=(π4y)B = (\frac{\pi}{4} - y).
LHS = cos(A+B)=cos[(π4x)+(π4y)]\cos(A + B) = \cos\left[ \left(\frac{\pi}{4} - x\right) + \left(\frac{\pi}{4} - y\right) \right]
LHS = cos(π4+π4xy)=cos(2π4(x+y))\cos\left( \frac{\pi}{4} + \frac{\pi}{4} - x - y \right) = \cos\left( \frac{2\pi}{4} - (x + y) \right)
LHS = cos(π2(x+y))\cos\left( \frac{\pi}{2} - (x + y) \right)
Using the identity cos(π/2θ)=sinθ\cos(\pi/2 - \theta) = \sin \theta:
LHS = sin(x+y)\sin(x + y)
LHS = RHS
Hence, proved.

Question 7: Prove that tan(π4+x)tan(π4x)=(1+tanx1tanx)2\frac{\tan(\frac{\pi}{4} + x)}{\tan(\frac{\pi}{4} - x)} = \left(\frac{1 + \tan x}{1 - \tan x}\right)^2

Answer-
LHS = tan(π4+x)tan(π4x)\frac{\tan(\frac{\pi}{4} + x)}{\tan(\frac{\pi}{4} - x)}
We use the sum and difference formulas for tan\tan:
Numerator: tan(π4+x)=tan(π/4)+tanx1tan(π/4)tanx=1+tanx1tanx\tan(\frac{\pi}{4} + x) = \frac{\tan(\pi/4) + \tan x}{1 - \tan(\pi/4) \tan x} = \frac{1 + \tan x}{1 - \tan x}
Denominator: tan(π4x)=tan(π/4)tanx1+tan(π/4)tanx=1tanx1+tanx\tan(\frac{\pi}{4} - x) = \frac{\tan(\pi/4) - \tan x}{1 + \tan(\pi/4) \tan x} = \frac{1 - \tan x}{1 + \tan x}
Now, substitute these back into the LHS:
LHS = (1+tanx)/(1tanx)(1tanx)/(1+tanx)\frac{ (1 + \tan x) / (1 - \tan x) }{ (1 - \tan x) / (1 + \tan x) }
LHS = 1+tanx1tanx×1+tanx1tanx\frac{1 + \tan x}{1 - \tan x} \times \frac{1 + \tan x}{1 - \tan x}
LHS = (1+tanx)2(1tanx)2=(1+tanx1tanx)2\frac{(1 + \tan x)^2}{(1 - \tan x)^2} = \left(\frac{1 + \tan x}{1 - \tan x}\right)^2
LHS = RHS
Hence, proved.

Question 8: Prove that cos(π+x)cos(x)sin(πx)cos(π2+x)=cot2x\frac{\cos(\pi + x) \cos(-x)}{\sin(\pi - x) \cos(\frac{\pi}{2} + x)} = \cot^2 x

Answer-
LHS = cos(π+x)cos(x)sin(πx)cos(π2+x)\frac{\cos(\pi + x) \cos(-x)}{\sin(\pi - x) \cos(\frac{\pi}{2} + x)}
We simplify each term using allied angle identities:
cos(π+x)=cosx\cos(\pi + x) = -\cos x (Q3, cos\cos is negative)
cos(x)=cosx\cos(-x) = \cos x (cos\cos is an even function)
sin(πx)=sinx\sin(\pi - x) = \sin x (Q2, sin\sin is positive)
cos(π2+x)=sinx\cos(\frac{\pi}{2} + x) = -\sin x (Q2, cos\cos is negative, and cos\cos changes to sin\sin)
Substitute these into the LHS:
LHS = (cosx)(cosx)(sinx)(sinx)\frac{(-\cos x)(\cos x)}{(\sin x)(-\sin x)}
LHS = cos2xsin2x=cos2xsin2x\frac{-\cos^2 x}{-\sin^2 x} = \frac{\cos^2 x}{\sin^2 x}
LHS = cot2x\cot^2 x
LHS = RHS
Hence, proved.

Question 9: Prove that cos(3π2+x)cos(2π+x)[cot(3π2x)+cot(2π+x)]=1\cos(\frac{3\pi}{2} + x) \cos(2\pi + x) \left[ \cot(\frac{3\pi}{2} - x) + \cot(2\pi + x) \right] = 1

Answer-
LHS = cos(3π2+x)cos(2π+x)[cot(3π2x)+cot(2π+x)]\cos(\frac{3\pi}{2} + x) \cos(2\pi + x) \left[ \cot(\frac{3\pi}{2} - x) + \cot(2\pi + x) \right]
Simplify each term:
cos(3π2+x)=sinx\cos(\frac{3\pi}{2} + x) = \sin x (Q4, cos\cos is positive, cos\cos changes to sin\sin)
cos(2π+x)=cosx\cos(2\pi + x) = \cos x (Q1, period of 2π2\pi)
cot(3π2x)=tanx\cot(\frac{3\pi}{2} - x) = \tan x (Q3, cot\cot is positive, cot\cot changes to tan\tan)
cot(2π+x)=cotx\cot(2\pi + x) = \cot x (Q1, period of 2π2\pi)
Substitute these into the LHS:
LHS = (sinx)(cosx)[tanx+cotx](\sin x)(\cos x) [\tan x + \cot x]
Now, express tanx\tan x and cotx\cot x in terms of sinx\sin x and cosx\cos x:
LHS = (sinx)(cosx)[sinxcosx+cosxsinx](\sin x)(\cos x) \left[ \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} \right]
LHS = (sinx)(cosx)[sin2x+cos2xsinxcosx](\sin x)(\cos x) \left[ \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} \right]
Using the identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1:
LHS = (sinx)(cosx)[1sinxcosx](\sin x)(\cos x) \left[ \frac{1}{\sin x \cos x} \right]
LHS = 11
LHS = RHS
Hence, proved.

Question 10: Prove that sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx\sin(n + 1)x \sin(n + 2)x + \cos(n + 1)x \cos(n + 2)x = \cos x

Answer-
LHS = sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x\sin(n + 1)x \sin(n + 2)x + \cos(n + 1)x \cos(n + 2)x
Rearranging the terms:
LHS = cos(n+2)xcos(n+1)x+sin(n+2)xsin(n+1)x\cos(n + 2)x \cos(n + 1)x + \sin(n + 2)x \sin(n + 1)x
This expression is in the form cosAcosB+sinAsinB\cos A \cos B + \sin A \sin B, which is equal to cos(AB)\cos(A - B).
Let A=(n+2)xA = (n + 2)x and B=(n+1)xB = (n + 1)x.
LHS = cos(AB)=cos[(n+2)x(n+1)x]\cos(A - B) = \cos[ (n + 2)x - (n + 1)x ]
LHS = cos((n+2n1)x)\cos( (n+2 - n - 1)x )
LHS = cos(1x)=cosx\cos( 1 \cdot x ) = \cos x
LHS = RHS
Hence, proved.

Question 11: Prove that cos(3π4+x)cos(3π4x)=2sinx\cos(\frac{3\pi}{4} + x) - \cos(\frac{3\pi}{4} - x) = -\sqrt{2} \sin x

Answer-
LHS = cos(3π4+x)cos(3π4x)\cos(\frac{3\pi}{4} + x) - \cos(\frac{3\pi}{4} - x)
We use the sum-to-product formula cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right).
Let A=3π4+xA = \frac{3\pi}{4} + x and B=3π4xB = \frac{3\pi}{4} - x.
A+B2=(3π4+x)+(3π4x)2=2(3π/4)2=3π4\frac{A+B}{2} = \frac{(\frac{3\pi}{4} + x) + (\frac{3\pi}{4} - x)}{2} = \frac{2 \cdot (3\pi/4)}{2} = \frac{3\pi}{4}
AB2=(3π4+x)(3π4x)2=2x2=x\frac{A-B}{2} = \frac{(\frac{3\pi}{4} + x) - (\frac{3\pi}{4} - x)}{2} = \frac{2x}{2} = x
Substitute these into the formula:
LHS = 2sin(3π4)sin(x)-2 \sin\left(\frac{3\pi}{4}\right) \sin(x)
We need to find sin(3π/4)\sin(3\pi/4):
sin(3π/4)=sin(ππ/4)=sin(π/4)=12\sin(3\pi/4) = \sin(\pi - \pi/4) = \sin(\pi/4) = \frac{1}{\sqrt{2}}
LHS = 2(12)sin(x)-2 \left(\frac{1}{\sqrt{2}}\right) \sin(x)
LHS = 22sin(x)=2sinx-\frac{2}{\sqrt{2}} \sin(x) = -\sqrt{2} \sin x
LHS = RHS
Hence, proved.

Question 12: Prove that sin26xsin24x=sin2xsin10x\sin^2 6x - \sin^2 4x = \sin 2x \sin 10x

Answer-
LHS = sin26xsin24x\sin^2 6x - \sin^2 4x
We use the identity sin2Asin2B=sin(A+B)sin(AB)\sin^2 A - \sin^2 B = \sin(A + B) \sin(A - B).
Let A=6xA = 6x and B=4xB = 4x.
LHS = sin(6x+4x)sin(6x4x)\sin(6x + 4x) \sin(6x - 4x)
LHS = sin(10x)sin(2x)\sin(10x) \sin(2x)
LHS = sin2xsin10x\sin 2x \sin 10x
LHS = RHS
Hence, proved.

Question 13: Prove that cos22xcos26x=sin4xsin8x\cos^2 2x - \cos^2 6x = \sin 4x \sin 8x

Answer-
LHS = cos22xcos26x\cos^2 2x - \cos^2 6x
We use the identity cos2A=1sin2A\cos^2 A = 1 - \sin^2 A.
LHS = (1sin22x)(1sin26x)(1 - \sin^2 2x) - (1 - \sin^2 6x)
LHS = 1sin22x1+sin26x1 - \sin^2 2x - 1 + \sin^2 6x
LHS = sin26xsin22x\sin^2 6x - \sin^2 2x
Now we use the identity sin2Asin2B=sin(A+B)sin(AB)\sin^2 A - \sin^2 B = \sin(A + B) \sin(A - B).
Let A=6xA = 6x and B=2xB = 2x.
LHS = sin(6x+2x)sin(6x2x)\sin(6x + 2x) \sin(6x - 2x)
LHS = sin(8x)sin(4x)\sin(8x) \sin(4x)
LHS = sin4xsin8x\sin 4x \sin 8x
LHS = RHS
Hence, proved.

Question 14: Prove that sin2x+2sin4x+sin6x=4cos2xsin4x\sin 2x + 2\sin 4x + \sin 6x = 4\cos^2 x \sin 4x

Answer-
LHS = sin2x+2sin4x+sin6x\sin 2x + 2\sin 4x + \sin 6x
Group the outer terms:
LHS = (sin6x+sin2x)+2sin4x(\sin 6x + \sin 2x) + 2\sin 4x
Use the sum-to-product formula sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right).
LHS = [2sin(6x+2x2)cos(6x2x2)]+2sin4x\left[ 2 \sin\left(\frac{6x+2x}{2}\right) \cos\left(\frac{6x-2x}{2}\right) \right] + 2\sin 4x
LHS = 2sin(4x)cos(2x)+2sin4x2 \sin(4x) \cos(2x) + 2\sin 4x
Factor out 2sin4x2\sin 4x:
LHS = 2sin4x(cos2x+1)2\sin 4x (\cos 2x + 1)
Use the double-angle identity cos2x=2cos2x1\cos 2x = 2\cos^2 x - 1.
cos2x+1=(2cos2x1)+1=2cos2x\cos 2x + 1 = (2\cos^2 x - 1) + 1 = 2\cos^2 x
Substitute this back:
LHS = 2sin4x(2cos2x)2\sin 4x (2\cos^2 x)
LHS = 4cos2xsin4x4\cos^2 x \sin 4x
LHS = RHS
Hence, proved.

Question 15: Prove that cot4x(sin5x+sin3x)=cotx(sin5xsin3x)\cot 4x (\sin 5x + \sin 3x) = \cot x (\sin 5x - \sin 3x)

Answer-
We will simplify both LHS and RHS.
LHS = cot4x(sin5x+sin3x)\cot 4x (\sin 5x + \sin 3x)
Use sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right):
LHS = cos4xsin4x[2sin(5x+3x2)cos(5x3x2)]\frac{\cos 4x}{\sin 4x} \left[ 2 \sin\left(\frac{5x+3x}{2}\right) \cos\left(\frac{5x-3x}{2}\right) \right]
LHS = cos4xsin4x[2sin(4x)cos(x)]\frac{\cos 4x}{\sin 4x} [ 2 \sin(4x) \cos(x) ]
LHS = 2cos4xcosx2 \cos 4x \cos x

RHS = cotx(sin5xsin3x)\cot x (\sin 5x - \sin 3x)
Use sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right):
RHS = cosxsinx[2cos(5x+3x2)sin(5x3x2)]\frac{\cos x}{\sin x} \left[ 2 \cos\left(\frac{5x+3x}{2}\right) \sin\left(\frac{5x-3x}{2}\right) \right]
RHS = cosxsinx[2cos(4x)sin(x)]\frac{\cos x}{\sin x} [ 2 \cos(4x) \sin(x) ]
RHS = 2cosxcos4x2 \cos x \cos 4x

Since LHS = 2cos4xcosx2 \cos 4x \cos x and RHS = 2cos4xcosx2 \cos 4x \cos x,
LHS = RHS
Hence, proved.

Question 16: Prove that cos9xcos5xsin17xsin3x=sin2xcos10x\frac{\cos 9x - \cos 5x}{\sin 17x - \sin 3x} = -\frac{\sin 2x}{\cos 10x}

Answer-
LHS = cos9xcos5xsin17xsin3x\frac{\cos 9x - \cos 5x}{\sin 17x - \sin 3x}
Use sum-to-product formulas:
cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)
sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)
Numerator: cos9xcos5x=2sin(9x+5x2)sin(9x5x2)=2sin(7x)sin(2x)\cos 9x - \cos 5x = -2 \sin\left(\frac{9x+5x}{2}\right) \sin\left(\frac{9x-5x}{2}\right) = -2 \sin(7x) \sin(2x)
Denominator: sin17xsin3x=2cos(17x+3x2)sin(17x3x2)=2cos(10x)sin(7x)\sin 17x - \sin 3x = 2 \cos\left(\frac{17x+3x}{2}\right) \sin\left(\frac{17x-3x}{2}\right) = 2 \cos(10x) \sin(7x)
Substitute back into the LHS:
LHS = 2sin(7x)sin(2x)2cos(10x)sin(7x)\frac{-2 \sin(7x) \sin(2x)}{2 \cos(10x) \sin(7x)}
Cancel the 22 and sin(7x)\sin(7x) terms:
LHS = sin(2x)cos(10x)\frac{-\sin(2x)}{\cos(10x)}
LHS = RHS
Hence, proved.

Question 17: Prove that sin5x+sin3xcos5x+cos3x=tan4x\frac{\sin 5x + \sin 3x}{\cos 5x + \cos 3x} = \tan 4x

Answer-
LHS = sin5x+sin3xcos5x+cos3x\frac{\sin 5x + \sin 3x}{\cos 5x + \cos 3x}
Use sum-to-product formulas:
sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)
Numerator: sin5x+sin3x=2sin(5x+3x2)cos(5x3x2)=2sin(4x)cos(x)\sin 5x + \sin 3x = 2 \sin\left(\frac{5x+3x}{2}\right) \cos\left(\frac{5x-3x}{2}\right) = 2 \sin(4x) \cos(x)
Denominator: cos5x+cos3x=2cos(5x+3x2)cos(5x3x2)=2cos(4x)cos(x)\cos 5x + \cos 3x = 2 \cos\left(\frac{5x+3x}{2}\right) \cos\left(\frac{5x-3x}{2}\right) = 2 \cos(4x) \cos(x)
Substitute back into the LHS:
LHS = 2sin(4x)cos(x)2cos(4x)cos(x)\frac{2 \sin(4x) \cos(x)}{2 \cos(4x) \cos(x)}
Cancel the 22 and cos(x)\cos(x) terms:
LHS = sin(4x)cos(4x)=tan4x\frac{\sin(4x)}{\cos(4x)} = \tan 4x
LHS = RHS
Hence, proved.

Question 18: Prove that sinxsinycosx+cosy=tan(xy2)\frac{\sin x - \sin y}{\cos x + \cos y} = \tan\left(\frac{x - y}{2}\right)

Answer-
LHS = sinxsinycosx+cosy\frac{\sin x - \sin y}{\cos x + \cos y}
Use sum-to-product formulas:
sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)
Numerator: sinxsiny=2cos(x+y2)sin(xy2)\sin x - \sin y = 2 \cos\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right)
Denominator: cosx+cosy=2cos(x+y2)cos(xy2)\cos x + \cos y = 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)
Substitute back into the LHS:
LHS = 2cos(x+y2)sin(xy2)2cos(x+y2)cos(xy2)\frac{2 \cos\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right)}{2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)}
Cancel the 22 and cos(x+y2)\cos\left(\frac{x+y}{2}\right) terms:
LHS = sin(xy2)cos(xy2)=tan(xy2)\frac{\sin\left(\frac{x-y}{2}\right)}{\cos\left(\frac{x-y}{2}\right)} = \tan\left(\frac{x - y}{2}\right)
LHS = RHS
Hence, proved.

Question 19: Prove that sinx+sin3xcosx+cos3x=tan2x\frac{\sin x + \sin 3x}{\cos x + \cos 3x} = \tan 2x

Answer-
LHS = sinx+sin3xcosx+cos3x=sin3x+sinxcos3x+cosx\frac{\sin x + \sin 3x}{\cos x + \cos 3x} = \frac{\sin 3x + \sin x}{\cos 3x + \cos x}
Use sum-to-product formulas:
sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)
Numerator: sin3x+sinx=2sin(3x+x2)cos(3xx2)=2sin(2x)cos(x)\sin 3x + \sin x = 2 \sin\left(\frac{3x+x}{2}\right) \cos\left(\frac{3x-x}{2}\right) = 2 \sin(2x) \cos(x)
Denominator: cos3x+cosx=2cos(3x+x2)cos(3xx2)=2cos(2x)cos(x)\cos 3x + \cos x = 2 \cos\left(\frac{3x+x}{2}\right) \cos\left(\frac{3x-x}{2}\right) = 2 \cos(2x) \cos(x)
Substitute back into the LHS:
LHS = 2sin(2x)cos(x)2cos(2x)cos(x)\frac{2 \sin(2x) \cos(x)}{2 \cos(2x) \cos(x)}
Cancel the 22 and cos(x)\cos(x) terms:
LHS = sin(2x)cos(2x)=tan2x\frac{\sin(2x)}{\cos(2x)} = \tan 2x
LHS = RHS
Hence, proved.

Question 20: Prove that sinxsin3xsin2xcos2x=2sinx\frac{\sin x - \sin 3x}{\sin^2 x - \cos^2 x} = 2\sin x

Answer-
LHS = sinxsin3xsin2xcos2x\frac{\sin x - \sin 3x}{\sin^2 x - \cos^2 x}
Numerator: Use sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)
sinxsin3x=2cos(x+3x2)sin(x3x2)\sin x - \sin 3x = 2 \cos\left(\frac{x+3x}{2}\right) \sin\left(\frac{x-3x}{2}\right)
=2cos(2x)sin(x)= 2 \cos(2x) \sin(-x)
Since sin(x)=sinx\sin(-x) = -\sin x:
=2cos(2x)sin(x)= -2 \cos(2x) \sin(x)
Denominator: sin2xcos2x=(cos2xsin2x)\sin^2 x - \cos^2 x = -(\cos^2 x - \sin^2 x)
Using the identity cos2x=cos2xsin2x\cos 2x = \cos^2 x - \sin^2 x:
=cos(2x)= -\cos(2x)
Substitute back into the LHS:
LHS = 2cos(2x)sin(x)cos(2x)\frac{-2 \cos(2x) \sin(x)}{-\cos(2x)}
Cancel the cos(2x)-\cos(2x) terms:
LHS = 2sinx2\sin x
LHS = RHS
Hence, proved.

Question 21: Prove that cos4x+cos3x+cos2xsin4x+sin3x+sin2x=cot3x\frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x

Answer-
LHS = cos4x+cos3x+cos2xsin4x+sin3x+sin2x\frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x}
Group the outer terms in the numerator and denominator:
LHS = (cos4x+cos2x)+cos3x(sin4x+sin2x)+sin3x\frac{(\cos 4x + \cos 2x) + \cos 3x}{(\sin 4x + \sin 2x) + \sin 3x}
Use sum-to-product formulas:
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)
sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)
Numerator: (cos4x+cos2x)+cos3x=[2cos(4x+2x2)cos(4x2x2)]+cos3x(\cos 4x + \cos 2x) + \cos 3x = \left[ 2 \cos\left(\frac{4x+2x}{2}\right) \cos\left(\frac{4x-2x}{2}\right) \right] + \cos 3x
=2cos(3x)cos(x)+cos3x= 2 \cos(3x) \cos(x) + \cos 3x
Denominator: (sin4x+sin2x)+sin3x=[2sin(4x+2x2)cos(4x2x2)]+sin3x(\sin 4x + \sin 2x) + \sin 3x = \left[ 2 \sin\left(\frac{4x+2x}{2}\right) \cos\left(\frac{4x-2x}{2}\right) \right] + \sin 3x
=2sin(3x)cos(x)+sin3x= 2 \sin(3x) \cos(x) + \sin 3x
Substitute back into the LHS:
LHS = 2cos(3x)cos(x)+cos3x2sin(3x)cos(x)+sin3x\frac{2 \cos(3x) \cos(x) + \cos 3x}{2 \sin(3x) \cos(x) + \sin 3x}
Factor out cos3x\cos 3x from the numerator and sin3x\sin 3x from the denominator:
LHS = cos3x(2cosx+1)sin3x(2cosx+1)\frac{\cos 3x (2 \cos x + 1)}{\sin 3x (2 \cos x + 1)}
Cancel the (2cosx+1)(2 \cos x + 1) term:
LHS = cos3xsin3x=cot3x\frac{\cos 3x}{\sin 3x} = \cot 3x
LHS = RHS
Hence, proved.

Question 22: Prove that cotxcot2xcot2xcot3xcot3xcotx=1\cot x \cot 2x - \cot 2x \cot 3x - \cot 3x \cot x = 1

Answer-
We start with the relationship 3x=2x+x3x = 2x + x.
Apply cot\cot to both sides:
cot(3x)=cot(2x+x)\cot(3x) = \cot(2x + x)
Use the formula cot(A+B)=cotAcotB1cotB+cotA\cot(A + B) = \frac{\cot A \cot B - 1}{\cot B + \cot A}:
cot(3x)=cot2xcotx1cotx+cot2x\cot(3x) = \frac{\cot 2x \cot x - 1}{\cot x + \cot 2x}
Cross-multiply:
cot(3x)(cotx+cot2x)=cot2xcotx1\cot(3x) (\cot x + \cot 2x) = \cot 2x \cot x - 1
cot3xcotx+cot3xcot2x=cot2xcotx1\cot 3x \cot x + \cot 3x \cot 2x = \cot 2x \cot x - 1
Rearrange the terms to match the required expression:
1=cot2xcotxcot3xcotxcot3xcot2x1 = \cot 2x \cot x - \cot 3x \cot x - \cot 3x \cot 2x
1=cotxcot2xcot2xcot3xcot3xcotx1 = \cot x \cot 2x - \cot 2x \cot 3x - \cot 3x \cot x
Hence, proved.

Question 23: Prove that tan4x=4tanx(1tan2x)16tan2x+tan4x\tan 4x = \frac{4\tan x (1 - \tan^2 x)}{1 - 6\tan^2 x + \tan^4 x}

Answer-
LHS = tan4x=tan(22x)\tan 4x = \tan(2 \cdot 2x)
Use the double-angle formula tan2A=2tanA1tan2A\tan 2A = \frac{2\tan A}{1 - \tan^2 A}.
First, let A=2xA = 2x:
tan4x=2tan2x1tan2(2x)\tan 4x = \frac{2\tan 2x}{1 - \tan^2(2x)}
Now, use the same formula again for tan2x\tan 2x:
tan2x=2tanx1tan2x\tan 2x = \frac{2\tan x}{1 - \tan^2 x}
Substitute this into the expression for tan4x\tan 4x:
Numerator: 2tan2x=2(2tanx1tan2x)=4tanx1tan2x2\tan 2x = 2 \left( \frac{2\tan x}{1 - \tan^2 x} \right) = \frac{4\tan x}{1 - \tan^2 x}
Denominator: 1tan2(2x)=1(2tanx1tan2x)21 - \tan^2(2x) = 1 - \left( \frac{2\tan x}{1 - \tan^2 x} \right)^2
=14tan2x(1tan2x)2= 1 - \frac{4\tan^2 x}{(1 - \tan^2 x)^2}
=(1tan2x)24tan2x(1tan2x)2= \frac{(1 - \tan^2 x)^2 - 4\tan^2 x}{(1 - \tan^2 x)^2}
=(12tan2x+tan4x)4tan2x(1tan2x)2= \frac{(1 - 2\tan^2 x + \tan^4 x) - 4\tan^2 x}{(1 - \tan^2 x)^2}
=16tan2x+tan4x(1tan2x)2= \frac{1 - 6\tan^2 x + \tan^4 x}{(1 - \tan^2 x)^2}
Now, combine the numerator and denominator for tan4x\tan 4x:
LHS = 4tanx1tan2x16tan2x+tan4x(1tan2x)2\frac{ \frac{4\tan x}{1 - \tan^2 x} }{ \frac{1 - 6\tan^2 x + \tan^4 x}{(1 - \tan^2 x)^2} }
LHS = 4tanx1tan2x×(1tan2x)216tan2x+tan4x\frac{4\tan x}{1 - \tan^2 x} \times \frac{(1 - \tan^2 x)^2}{1 - 6\tan^2 x + \tan^4 x}
Cancel one (1tan2x)(1 - \tan^2 x) term:
LHS = 4tanx(1tan2x)16tan2x+tan4x\frac{4\tan x (1 - \tan^2 x)}{1 - 6\tan^2 x + \tan^4 x}
LHS = RHS
Hence, proved.

Question 24: Prove that cos4x=18sin2xcos2x\cos 4x = 1 - 8\sin^2 x \cos^2 x

Answer-
LHS = cos4x=cos(22x)\cos 4x = \cos(2 \cdot 2x)
Use the double-angle formula cos2A=12sin2A\cos 2A = 1 - 2\sin^2 A.
Let A=2xA = 2x:
LHS = 12sin2(2x)1 - 2\sin^2(2x)
LHS = 12(sin2x)21 - 2(\sin 2x)^2
Now use the double-angle formula sin2x=2sinxcosx\sin 2x = 2\sin x \cos x:
LHS = 12(2sinxcosx)21 - 2(2\sin x \cos x)^2
LHS = 12(4sin2xcos2x)1 - 2(4\sin^2 x \cos^2 x)
LHS = 18sin2xcos2x1 - 8\sin^2 x \cos^2 x
LHS = RHS
Hence, proved.

Question 25: Prove that cos6x=32cos6x48cos4x+18cos2x1\cos 6x = 32\cos^6 x - 48\cos^4 x + 18\cos^2 x - 1

Answer-
LHS = cos6x=cos(32x)\cos 6x = \cos(3 \cdot 2x)
Use the triple-angle formula cos3A=4cos3A3cosA\cos 3A = 4\cos^3 A - 3\cos A.
Let A=2xA = 2x:
LHS = 4cos3(2x)3cos(2x)4\cos^3(2x) - 3\cos(2x)
Now use the double-angle formula cos2x=2cos2x1\cos 2x = 2\cos^2 x - 1:
LHS = 4(2cos2x1)33(2cos2x1)4(2\cos^2 x - 1)^3 - 3(2\cos^2 x - 1)
Expand (2cos2x1)3(2\cos^2 x - 1)^3 using (ab)3=a33a2b+3ab2b3(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3:
(2cos2x)33(2cos2x)2(1)+3(2cos2x)(1)2(1)3(2\cos^2 x)^3 - 3(2\cos^2 x)^2(1) + 3(2\cos^2 x)(1)^2 - (1)^3
=8cos6x3(4cos4x)+6cos2x1= 8\cos^6 x - 3(4\cos^4 x) + 6\cos^2 x - 1
=8cos6x12cos4x+6cos2x1= 8\cos^6 x - 12\cos^4 x + 6\cos^2 x - 1
Now substitute this back into the expression for LHS:
LHS = 4(8cos6x12cos4x+6cos2x1)3(2cos2x1)4(8\cos^6 x - 12\cos^4 x + 6\cos^2 x - 1) - 3(2\cos^2 x - 1)
LHS = (32cos6x48cos4x+24cos2x4)(6cos2x3)(32\cos^6 x - 48\cos^4 x + 24\cos^2 x - 4) - (6\cos^2 x - 3)
LHS = 32cos6x48cos4x+24cos2x46cos2x+332\cos^6 x - 48\cos^4 x + 24\cos^2 x - 4 - 6\cos^2 x + 3
LHS = 32cos6x48cos4x+18cos2x132\cos^6 x - 48\cos^4 x + 18\cos^2 x - 1
LHS = RHS
Hence, proved.


Miscellaneous Exercise on Chapter 3

Question 1: Prove that 2cosπ13cos9π13+cos3π13+cos5π13=02\cos \frac{\pi}{13} \cos \frac{9\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} = 0

Answer-
LHS = 2cosπ13cos9π13+cos3π13+cos5π132\cos \frac{\pi}{13} \cos \frac{9\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13}
Use the product-to-sum formula 2cosAcosB=cos(A+B)+cos(AB)2\cos A \cos B = \cos(A + B) + \cos(A - B) on the first term.
2cosπ13cos9π13=cos(π13+9π13)+cos(π139π13)2\cos \frac{\pi}{13} \cos \frac{9\pi}{13} = \cos\left(\frac{\pi}{13} + \frac{9\pi}{13}\right) + \cos\left(\frac{\pi}{13} - \frac{9\pi}{13}\right)
=cos(10π13)+cos(8π13)= \cos\left(\frac{10\pi}{13}\right) + \cos\left(-\frac{8\pi}{13}\right)
Since cos(θ)=cosθ\cos(-\theta) = \cos \theta:
=cos(10π13)+cos(8π13)= \cos\left(\frac{10\pi}{13}\right) + \cos\left(\frac{8\pi}{13}\right)
Substitute this back into the LHS:
LHS = cos(10π13)+cos(8π13)+cos3π13+cos5π13\cos\left(\frac{10\pi}{13}\right) + \cos\left(\frac{8\pi}{13}\right) + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13}
We can write 10π/1310\pi/13 as π3π/13\pi - 3\pi/13 and 8π/138\pi/13 as π5π/13\pi - 5\pi/13.
cos(10π/13)=cos(π3π/13)=cos(3π/13)\cos(10\pi/13) = \cos(\pi - 3\pi/13) = -\cos(3\pi/13)
cos(8π/13)=cos(π5π/13)=cos(5π/13)\cos(8\pi/13) = \cos(\pi - 5\pi/13) = -\cos(5\pi/13)
Substitute these into the LHS:
LHS = (cos3π13)+(cos5π13)+cos3π13+cos5π13(-\cos \frac{3\pi}{13}) + (-\cos \frac{5\pi}{13}) + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13}
LHS = 00
LHS = RHS
Hence, proved.

Question 2: Prove that (sin3x+sinx)sinx+(cos3xcosx)cosx=0(\sin 3x + \sin x)\sin x + (\cos 3x - \cos x)\cos x = 0

Answer-
LHS = (sin3x+sinx)sinx+(cos3xcosx)cosx(\sin 3x + \sin x)\sin x + (\cos 3x - \cos x)\cos x
Method 1: Expand the terms
LHS = sin3xsinx+sin2x+cos3xcosxcos2x\sin 3x \sin x + \sin^2 x + \cos 3x \cos x - \cos^2 x
LHS = (cos3xcosx+sin3xsinx)(cos2xsin2x)(\cos 3x \cos x + \sin 3x \sin x) - (\cos^2 x - \sin^2 x)
Use cos(AB)=cosAcosB+sinAsinB\cos(A - B) = \cos A \cos B + \sin A \sin B and cos2x=cos2xsin2x\cos 2x = \cos^2 x - \sin^2 x:
LHS = cos(3xx)cos(2x)\cos(3x - x) - \cos(2x)
LHS = cos(2x)cos(2x)=0\cos(2x) - \cos(2x) = 0
LHS = RHS
Method 2: Use sum-to-product formulas
sin3x+sinx=2sin(2x)cos(x)\sin 3x + \sin x = 2 \sin(2x) \cos(x)
cos3xcosx=2sin(2x)sin(x)\cos 3x - \cos x = -2 \sin(2x) \sin(x)
LHS = (2sin2xcosx)sinx+(2sin2xsinx)cosx(2 \sin 2x \cos x)\sin x + (-2 \sin 2x \sin x)\cos x
LHS = 2sin2xsinxcosx2sin2xsinxcosx2 \sin 2x \sin x \cos x - 2 \sin 2x \sin x \cos x
LHS = 00
LHS = RHS
Hence, proved.

Question 3: Prove that (cosx+cosy)2+(sinxsiny)2=4cos2(x+y2)(\cos x + \cos y)^2 + (\sin x - \sin y)^2 = 4\cos^2\left(\frac{x + y}{2}\right)

Answer-
LHS = (cosx+cosy)2+(sinxsiny)2(\cos x + \cos y)^2 + (\sin x - \sin y)^2
Use sum-to-product formulas:
cosx+cosy=2cos(x+y2)cos(xy2)\cos x + \cos y = 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)
sinxsiny=2cos(x+y2)sin(xy2)\sin x - \sin y = 2 \cos\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right)
Substitute these into the LHS:
LHS = [2cos(x+y2)cos(xy2)]2+[2cos(x+y2)sin(xy2)]2\left[ 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \right]^2 + \left[ 2 \cos\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right) \right]^2
LHS = 4cos2(x+y2)cos2(xy2)+4cos2(x+y2)sin2(xy2)4 \cos^2\left(\frac{x+y}{2}\right) \cos^2\left(\frac{x-y}{2}\right) + 4 \cos^2\left(\frac{x+y}{2}\right) \sin^2\left(\frac{x-y}{2}\right)
Factor out 4cos2(x+y2)4 \cos^2\left(\frac{x+y}{2}\right):
LHS = 4cos2(x+y2)[cos2(xy2)+sin2(xy2)]4 \cos^2\left(\frac{x+y}{2}\right) \left[ \cos^2\left(\frac{x-y}{2}\right) + \sin^2\left(\frac{x-y}{2}\right) \right]
Using the identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1:
LHS = 4cos2(x+y2)[1]4 \cos^2\left(\frac{x+y}{2}\right) [ 1 ]
LHS = 4cos2(x+y2)4 \cos^2\left(\frac{x+y}{2}\right)
LHS = RHS
Hence, proved.

Question 4: Prove that (cosxcosy)2+(sinxsiny)2=4sin2(xy2)(\cos x - \cos y)^2 + (\sin x - \sin y)^2 = 4\sin^2\left(\frac{x - y}{2}\right)

Answer-
LHS = (cosxcosy)2+(sinxsiny)2(\cos x - \cos y)^2 + (\sin x - \sin y)^2
Use sum-to-product formulas:
cosxcosy=2sin(x+y2)sin(xy2)\cos x - \cos y = -2 \sin\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right)
sinxsiny=2cos(x+y2)sin(xy2)\sin x - \sin y = 2 \cos\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right)
Substitute these into the LHS:
LHS = [2sin(x+y2)sin(xy2)]2+[2cos(x+y2)sin(xy2)]2\left[ -2 \sin\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right) \right]^2 + \left[ 2 \cos\left(\frac{x+y}{2}\right) \sin\left(\frac{x-y}{2}\right) \right]^2
LHS = 4sin2(x+y2)sin2(xy2)+4cos2(x+y2)sin2(xy2)4 \sin^2\left(\frac{x+y}{2}\right) \sin^2\left(\frac{x-y}{2}\right) + 4 \cos^2\left(\frac{x+y}{2}\right) \sin^2\left(\frac{x-y}{2}\right)
Factor out 4sin2(xy2)4 \sin^2\left(\frac{x-y}{2}\right):
LHS = 4sin2(xy2)[sin2(x+y2)+cos2(x+y2)]4 \sin^2\left(\frac{x-y}{2}\right) \left[ \sin^2\left(\frac{x+y}{2}\right) + \cos^2\left(\frac{x+y}{2}\right) \right]
Using the identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1:
LHS = 4sin2(xy2)[1]4 \sin^2\left(\frac{x-y}{2}\right) [ 1 ]
LHS = 4sin2(xy2)4 \sin^2\left(\frac{x-y}{2}\right)
LHS = RHS
Hence, proved.

Question 5: Prove that sinx+sin3x+sin5x+sin7x=4cosxcos2xsin4x\sin x + \sin 3x + \sin 5x + \sin 7x = 4\cos x \cos 2x \sin 4x

Answer-
LHS = sinx+sin3x+sin5x+sin7x\sin x + \sin 3x + \sin 5x + \sin 7x
Group terms:
LHS = (sin7x+sinx)+(sin5x+sin3x)(\sin 7x + \sin x) + (\sin 5x + \sin 3x)
Use sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right):
(sin7x+sinx)=2sin(7x+x2)cos(7xx2)=2sin(4x)cos(3x)(\sin 7x + \sin x) = 2 \sin\left(\frac{7x+x}{2}\right) \cos\left(\frac{7x-x}{2}\right) = 2 \sin(4x) \cos(3x)
(sin5x+sin3x)=2sin(5x+3x2)cos(5x3x2)=2sin(4x)cos(x)(\sin 5x + \sin 3x) = 2 \sin\left(\frac{5x+3x}{2}\right) \cos\left(\frac{5x-3x}{2}\right) = 2 \sin(4x) \cos(x)
Substitute back into the LHS:
LHS = 2sin(4x)cos(3x)+2sin(4x)cos(x)2 \sin(4x) \cos(3x) + 2 \sin(4x) \cos(x)
Factor out 2sin(4x)2 \sin(4x):
LHS = 2sin(4x)[cos(3x)+cos(x)]2 \sin(4x) [\cos(3x) + \cos(x)]
Now use cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right):
cos(3x)+cos(x)=2cos(3x+x2)cos(3xx2)=2cos(2x)cos(x)\cos(3x) + \cos(x) = 2 \cos\left(\frac{3x+x}{2}\right) \cos\left(\frac{3x-x}{2}\right) = 2 \cos(2x) \cos(x)
Substitute this back:
LHS = 2sin(4x)[2cos(2x)cos(x)]2 \sin(4x) [2 \cos(2x) \cos(x)]
LHS = 4sin(4x)cos(2x)cos(x)4 \sin(4x) \cos(2x) \cos(x)
LHS = 4cosxcos2xsin4x4\cos x \cos 2x \sin 4x
LHS = RHS
Hence, proved.

Question 6: Prove that (sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x\frac{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)} = \tan 6x

Answer-
LHS = (sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)\frac{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}
Apply sum-to-product formulas to all four pairs:
sin7x+sin5x=2sin(6x)cos(x)\sin 7x + \sin 5x = 2 \sin(6x) \cos(x)
sin9x+sin3x=2sin(6x)cos(3x)\sin 9x + \sin 3x = 2 \sin(6x) \cos(3x)
cos7x+cos5x=2cos(6x)cos(x)\cos 7x + \cos 5x = 2 \cos(6x) \cos(x)
cos9x+cos3x=2cos(6x)cos(3x)\cos 9x + \cos 3x = 2 \cos(6x) \cos(3x)
Substitute these into the LHS:
LHS = 2sin(6x)cos(x)+2sin(6x)cos(3x)2cos(6x)cos(x)+2cos(6x)cos(3x)\frac{2 \sin(6x) \cos(x) + 2 \sin(6x) \cos(3x)}{2 \cos(6x) \cos(x) + 2 \cos(6x) \cos(3x)}
Factor out 2sin(6x)2\sin(6x) from the numerator and 2cos(6x)2\cos(6x) from the denominator:
LHS = 2sin(6x)(cosx+cos3x)2cos(6x)(cosx+cos3x)\frac{2 \sin(6x) (\cos x + \cos 3x)}{2 \cos(6x) (\cos x + \cos 3x)}
Cancel the 22 and (cosx+cos3x)(\cos x + \cos 3x) terms:
LHS = sin(6x)cos(6x)=tan6x\frac{\sin(6x)}{\cos(6x)} = \tan 6x
LHS = RHS
Hence, proved.

Question 7: Prove that sin3x+sin2xsinx=4sinxcos(x2)cos(3x2)\sin 3x + \sin 2x - \sin x = 4\sin x \cos\left(\frac{x}{2}\right) \cos\left(\frac{3x}{2}\right)

Answer-
LHS = sin3x+sin2xsinx\sin 3x + \sin 2x - \sin x
Group the outer terms:
LHS = (sin3xsinx)+sin2x(\sin 3x - \sin x) + \sin 2x
Use sinAsinB=2cos(A+B2)sin(AB2)\sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right):
sin3xsinx=2cos(3x+x2)sin(3xx2)=2cos(2x)sin(x)\sin 3x - \sin x = 2 \cos\left(\frac{3x+x}{2}\right) \sin\left(\frac{3x-x}{2}\right) = 2 \cos(2x) \sin(x)
Substitute back, and use sin2x=2sinxcosx\sin 2x = 2\sin x \cos x:
LHS = 2cos(2x)sin(x)+2sinxcosx2 \cos(2x) \sin(x) + 2\sin x \cos x
Factor out 2sinx2\sin x:
LHS = 2sinx(cos2x+cosx)2\sin x (\cos 2x + \cos x)
Now use cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right):
cos2x+cosx=2cos(2x+x2)cos(2xx2)=2cos(3x2)cos(x2)\cos 2x + \cos x = 2 \cos\left(\frac{2x+x}{2}\right) \cos\left(\frac{2x-x}{2}\right) = 2 \cos\left(\frac{3x}{2}\right) \cos\left(\frac{x}{2}\right)
Substitute this back:
LHS = 2sinx[2cos(3x2)cos(x2)]2\sin x \left[ 2 \cos\left(\frac{3x}{2}\right) \cos\left(\frac{x}{2}\right) \right]
LHS = 4sinxcos(x2)cos(3x2)4\sin x \cos\left(\frac{x}{2}\right) \cos\left(\frac{3x}{2}\right)
LHS = RHS
Hence, proved.

Question 8: Find sin(x/2)\sin(x/2), cos(x/2)\cos(x/2) and tan(x/2)\tan(x/2) if tanx=4/3\tan x = -4/3, xx lies in quadrant II.

Answer-
Given tanx=4/3\tan x = -4/3 and xx is in Quadrant II.
This means π2<x<π\frac{\pi}{2} < x < \pi.
Dividing by 2, we get π4<x2<π2\frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2}.
This means x/2x/2 lies in Quadrant I. In Q1, sin(x/2)\sin(x/2), cos(x/2)\cos(x/2), and tan(x/2)\tan(x/2) are all positive.

We know the formula tanx=2tan(x/2)1tan2(x/2)\tan x = \frac{2\tan(x/2)}{1 - \tan^2(x/2)}.
Let t=tan(x/2)t = \tan(x/2).
4/3=2t1t2-4/3 = \frac{2t}{1 - t^2}
4(1t2)=3(2t)-4(1 - t^2) = 3(2t)
4+4t2=6t-4 + 4t^2 = 6t
4t26t4=04t^2 - 6t - 4 = 0
2t23t2=02t^2 - 3t - 2 = 0
Factor the quadratic equation:
(2t+1)(t2)=0(2t + 1)(t - 2) = 0
So, t=1/2t = -1/2 or t=2t = 2.
Since x/2x/2 is in Q1, tan(x/2)\tan(x/2) must be positive.
Therefore, tan(x/2)=2\tan(x/2) = 2.

Now we find sin(x/2)\sin(x/2) and cos(x/2)\cos(x/2) using tan(x/2)=2/1\tan(x/2) = 2/1 (Opposite/Adjacent).
Hypotenuse = 22+12=5\sqrt{2^2 + 1^2} = \sqrt{5}.
Since x/2x/2 is in Q1:
sin(x/2)=OppositeHypotenuse=25=255\sin(x/2) = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}
cos(x/2)=AdjacentHypotenuse=15=55\cos(x/2) = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}

Final Answer:
sin(x/2)=25\sin(x/2) = \frac{2}{\sqrt{5}}
cos(x/2)=15\cos(x/2) = \frac{1}{\sqrt{5}}
tan(x/2)=2\tan(x/2) = 2

Question 9: Find sin(x/2)\sin(x/2), cos(x/2)\cos(x/2) and tan(x/2)\tan(x/2) if cosx=1/3\cos x = -1/3, xx lies in quadrant III.

Answer-
Given cosx=1/3\cos x = -1/3 and xx is in Quadrant III.
This means π<x<3π2\pi < x < \frac{3\pi}{2}.
Dividing by 2, we get π2<x2<3π4\frac{\pi}{2} < \frac{x}{2} < \frac{3\pi}{4}.
This means x/2x/2 lies in Quadrant II. In Q2, sin(x/2)\sin(x/2) is positive, cos(x/2)\cos(x/2) is negative, and tan(x/2)\tan(x/2) is negative.

We use the half-angle identities:

  1. sin2(x/2)=1cosx2\sin^2(x/2) = \frac{1 - \cos x}{2}
    sin2(x/2)=1(1/3)2=1+1/32=4/32=46=23\sin^2(x/2) = \frac{1 - (-1/3)}{2} = \frac{1 + 1/3}{2} = \frac{4/3}{2} = \frac{4}{6} = \frac{2}{3}
    Since x/2x/2 is in Q2, sin(x/2)\sin(x/2) is positive.
    sin(x/2)=23=23=63\sin(x/2) = \sqrt{\frac{2}{3}} = \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{6}}{3}

  2. cos2(x/2)=1+cosx2\cos^2(x/2) = \frac{1 + \cos x}{2}
    cos2(x/2)=1+(1/3)2=11/32=2/32=13\cos^2(x/2) = \frac{1 + (-1/3)}{2} = \frac{1 - 1/3}{2} = \frac{2/3}{2} = \frac{1}{3}
    Since x/2x/2 is in Q2, cos(x/2)\cos(x/2) is negative.
    cos(x/2)=13=13=33\cos(x/2) = -\sqrt{\frac{1}{3}} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}

  3. tan(x/2)=sin(x/2)cos(x/2)\tan(x/2) = \frac{\sin(x/2)}{\cos(x/2)}
    tan(x/2)=2/31/3=2/31/3=2\tan(x/2) = \frac{\sqrt{2/3}}{-\sqrt{1/3}} = -\sqrt{\frac{2/3}{1/3}} = -\sqrt{2}

Final Answer:
sin(x/2)=63\sin(x/2) = \frac{\sqrt{6}}{3}
cos(x/2)=33\cos(x/2) = -\frac{\sqrt{3}}{3}
tan(x/2)=2\tan(x/2) = -\sqrt{2}

Question 10: Find sin(x/2)\sin(x/2), cos(x/2)\cos(x/2) and tan(x/2)\tan(x/2) if sinx=1/4\sin x = 1/4, xx lies in quadrant II.

Answer-
Given sinx=1/4\sin x = 1/4 and xx is in Quadrant II.
This means π2<x<π\frac{\pi}{2} < x < \pi.
Dividing by 2, we get π4<x2<π2\frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2}.
This means x/2x/2 lies in Quadrant I. In Q1, all trigonometric functions are positive.

First, we need to find cosx\cos x. Since xx is in Q2, cosx\cos x is negative.
cos2x=1sin2x=1(1/4)2=11/16=15/16\cos^2 x = 1 - \sin^2 x = 1 - (1/4)^2 = 1 - 1/16 = 15/16
cosx=1516=154\cos x = -\sqrt{\frac{15}{16}} = -\frac{\sqrt{15}}{4}

Now we use the half-angle identities:

  1. sin2(x/2)=1cosx2\sin^2(x/2) = \frac{1 - \cos x}{2}
    sin2(x/2)=1(15/4)2=1+15/42=(4+15)/42=4+158\sin^2(x/2) = \frac{1 - (-\sqrt{15}/4)}{2} = \frac{1 + \sqrt{15}/4}{2} = \frac{(4 + \sqrt{15})/4}{2} = \frac{4 + \sqrt{15}}{8}
    Since x/2x/2 is in Q1, sin(x/2)\sin(x/2) is positive.
    sin(x/2)=4+158=4+158=4+1522\sin(x/2) = \sqrt{\frac{4 + \sqrt{15}}{8}} = \frac{\sqrt{4 + \sqrt{15}}}{\sqrt{8}} = \frac{\sqrt{4 + \sqrt{15}}}{2\sqrt{2}}
    (To simplify 8+215=(5+3)2=5+3\sqrt{8+2\sqrt{15}} = \sqrt{(\sqrt{5}+\sqrt{3})^2} = \sqrt{5}+\sqrt{3})
    sin(x/2)=8+2154=5+34\sin(x/2) = \frac{\sqrt{8 + 2\sqrt{15}}}{4} = \frac{\sqrt{5} + \sqrt{3}}{4}

  2. cos2(x/2)=1+cosx2\cos^2(x/2) = \frac{1 + \cos x}{2}
    cos2(x/2)=1+(15/4)2=115/42=(415)/42=4158\cos^2(x/2) = \frac{1 + (-\sqrt{15}/4)}{2} = \frac{1 - \sqrt{15}/4}{2} = \frac{(4 - \sqrt{15})/4}{2} = \frac{4 - \sqrt{15}}{8}
    Since x/2x/2 is in Q1, cos(x/2)\cos(x/2) is positive.
    cos(x/2)=4158=4158=41522\cos(x/2) = \sqrt{\frac{4 - \sqrt{15}}{8}} = \frac{\sqrt{4 - \sqrt{15}}}{\sqrt{8}} = \frac{\sqrt{4 - \sqrt{15}}}{2\sqrt{2}}
    (To simplify 8215=(53)2=53\sqrt{8-2\sqrt{15}} = \sqrt{(\sqrt{5}-\sqrt{3})^2} = \sqrt{5}-\sqrt{3})
    cos(x/2)=82154=534\cos(x/2) = \frac{\sqrt{8 - 2\sqrt{15}}}{4} = \frac{\sqrt{5} - \sqrt{3}}{4}

  3. tan(x/2)=sin(x/2)cos(x/2)\tan(x/2) = \frac{\sin(x/2)}{\cos(x/2)}
    tan(x/2)=(5+3)/4(53)/4=5+353\tan(x/2) = \frac{(\sqrt{5} + \sqrt{3})/4}{(\sqrt{5} - \sqrt{3})/4} = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}
    Rationalizing: 5+353×5+35+3=(5+3)253\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} \times \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{(\sqrt{5} + \sqrt{3})^2}{5 - 3}
    =5+3+2152=8+2152=4+15= \frac{5 + 3 + 2\sqrt{15}}{2} = \frac{8 + 2\sqrt{15}}{2} = 4 + \sqrt{15}

Final Answer:
sin(x/2)=5+34\sin(x/2) = \frac{\sqrt{5} + \sqrt{3}}{4}
cos(x/2)=534\cos(x/2) = \frac{\sqrt{5} - \sqrt{3}}{4}
tan(x/2)=4+15\tan(x/2) = 4 + \sqrt{15}

Frequently Asked Questions