NCERT Solutions For Class 11 Maths: Trigonometric Functions
October 26, 2025
Chapter 3: Trigonometric Functions
- Class 11 Mathematics
Summary of the Chapter
This chapter provides a comprehensive introduction to trigonometric functions, moving from the right-angled triangle definitions to a more general circular function approach.
Key concepts covered:
Angles: Measurement of angles in degrees and radians. The relationship is 2π radians=360∘, or π radians=180∘.
Radian Measure: The angle subtended at the center of a circle by an arc equal in length to the radius. The formula relating arc length (l), radius (r), and central angle (θ in radians) is l=rθ.
Trigonometric Functions: Defined using a unit circle (a circle with radius 1). For a point P(x,y) on the unit circle corresponding to an angle θ, cosθ=x and sinθ=y.
Six Functions:tanθ=y/x, cscθ=1/y, secθ=1/x, and cotθ=x/y.
Signs in Quadrants (ASTC Rule):
Quadrant I: All functions are positive.
Quadrant II: sin and csc are positive.
Quadrant III: tan and cot are positive.
Quadrant IV: cos and sec are positive.
Domain and Range: The domain and range for all six trigonometric functions are established. For example, the domain of sinθ is all real numbers (R) and its range is [−1,1].
Fundamental Identities:
sin2x+cos2x=1
1+tan2x=sec2x
1+cot2x=csc2x
Periodicity: Trigonometric functions are periodic. sin and cos have a period of 2π, while tan has a period of π.
Sum and Difference Formulas: Formulas for cos(x±y), sin(x±y), and tan(x±y) are introduced, which are fundamental for further derivations.
Double-Angle and Half-Angle Formulas: Formulas like cos2x=cos2x−sin2x, sin2x=2sinxcosx, and others are derived.
Trigonometric Equations: The concepts of principal solutions (solutions in the interval [0,2π)) and general solutions (expressions that give all possible solutions) are introduced.
NCERT Textbook Questions and Answers
Exercise 3.1
Question 1: Find the radian measures corresponding to the following degree measures: (i) 25∘ (ii) −47∘30′ (iii) 240∘ (iv) 520∘
Answer-
We know that 180∘=π radians. Therefore, 1∘=180π radians.
(i) 25∘=25×180π radians=365π radians
(ii) −47∘30′=−476030∘=−47.5∘=−295∘ −295∘=−295×180π radians=−219×36π radians=−7219π radians
(iii) 240∘=240×180π radians=34π radians
(iv) 520∘=520×180π radians=926π radians
Question 2: Find the degree measures corresponding to the following radian measures (Use π=22/7). (i) 11/16 (ii) −4 (iii) 5π/3 (iv) 7π/6
Answer-
We know that π radians=180∘. Therefore, 1 radian=π180∘.
(ii) −4 radians=−4×π180∘=−4×22/7180∘=22−4×180×7∘=11−2×180×7∘ =11−2520∘=−229111∘=−229∘−111×60′=−229∘−5115′ =−229∘5′−115×60′′=−229∘5′−11300′′≈−229∘5′27′′
(Note: 229∘5′27′′ is also acceptable if taken as positive conversion and adding negative sign)
(iii) 35π radians=35π×π180∘=5×60∘=300∘
(iv) 67π radians=67π×π180∘=7×30∘=210∘
Question 3: A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?
Answer-
Revolutions in 1 minute (60 seconds) = 360
Revolutions in 1 second = 60360=6
Angle turned in 1 revolution = 2π radians
Angle turned in 6 revolutions = 6×2π=12π radians
The wheel turns 12π radians in one second.
Question 4: Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm (Use π=22/7).
Answer-
Given: radius r=100 cm, arc length l=22 cm.
We use the formula θ=rl, where θ is in radians. θ=10022 radians=5011 radians
Now, convert θ to degrees: θ in degrees=5011×π180∘=5011×22/7180∘=5011×22180×7∘ =501×2180×7∘=501×90×7∘=59×7∘=563∘ 563∘=1253∘=12∘+53×60′=12∘+3×12′=12∘36′
Question 5: In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of the minor arc of the chord.
Answer-
Diameter = 40 cm, so radius r=20 cm.
Length of chord = 20 cm.
The triangle formed by the two radii and the chord has all three sides equal to 20 cm.
Therefore, it is an equilateral triangle.
The angle θ subtended by the chord at the center is 60∘.
To use l=rθ, we must convert θ to radians: θ=60∘=60×180π=3π radians.
Length of the minor arc l=rθ=20×3π=320π cm.
Question 6: If in two circles, arcs of the same length subtend angles 60∘ and 75∘ at the centre, find the ratio of their radii.
Answer-
Let the radii be r1 and r2.
Let the arc length be l for both.
Given θ1=60∘ and θ2=75∘.
We must convert angles to radians: θ1=60∘=60×180π=3π radians θ2=75∘=75×180π=125π radians
We know l=r1θ1 and l=r2θ2.
Therefore, r1θ1=r2θ2 r1(3π)=r2(125π) 3r1=125r2 r2r1=125×3=1215=45
The ratio of their radii r1:r2=5:4.
Question 7: Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length: (i) 10 cm (ii) 15 cm (iii) 21 cm
Answer-
The length of the pendulum is the radius r=75 cm. The arc length is l.
The angle in radians is θ=rl.
(i) l=10 cm. θ=7510=152 radians.
(ii) l=15 cm. θ=7515=51 radians.
(iii) l=21 cm. θ=7521=257 radians.
Exercise 3.2
Question 1: Find the values of other five trigonometric functions if cosx=−1/2, x lies in the third quadrant.
Answer-
Given cosx=−1/2 and x is in Quadrant 3.
In Q3, sinx is negative and tanx is positive.
secx=cosx1=−1/21=−2
sin2x+cos2x=1 sin2x=1−cos2x=1−(−1/2)2=1−1/4=3/4 sinx=−23 (since x is in Q3)
cscx=sinx1=−3/21=−32
tanx=cosxsinx=−1/2−3/2=3
cotx=tanx1=31
Question 2: Find the values of other five trigonometric functions if sinx=3/5, x lies in second quadrant.
Answer-
Given sinx=3/5 and x is in Quadrant 2.
In Q2, cosx is negative and tanx is negative.
cscx=sinx1=3/51=35
sin2x+cos2x=1 cos2x=1−sin2x=1−(3/5)2=1−9/25=16/25 cosx=−54 (since x is in Q2)
secx=cosx1=−4/51=−45
tanx=cosxsinx=−4/53/5=−43
cotx=tanx1=−3/41=−34
Question 3: Find the values of other five trigonometric functions if cotx=3/4, x lies in third quadrant.
Answer-
Given cotx=3/4 and x is in Quadrant 3.
In Q3, sinx is negative, cosx is negative, and tanx is positive.
tanx=cotx1=3/41=34
1+cot2x=csc2x csc2x=1+(3/4)2=1+9/16=25/16 cscx=−45 (since x is in Q3)
sinx=cscx1=−5/41=−54
1+tan2x=sec2x sec2x=1+(4/3)2=1+16/9=25/9 secx=−35 (since x is in Q3)
cosx=secx1=−5/31=−53
Question 4: Find the values of other five trigonometric functions if secx=13/5, x lies in fourth quadrant.
Answer-
Given secx=13/5 and x is in Quadrant 4.
In Q4, sinx is negative, cosx is positive, and tanx is negative.
cosx=secx1=13/51=135
sin2x+cos2x=1 sin2x=1−cos2x=1−(5/13)2=1−25/169=144/169 sinx=−1312 (since x is in Q4)
cscx=sinx1=−12/131=−1213
tanx=cosxsinx=5/13−12/13=−512
cotx=tanx1=−12/51=−125
Question 5: Find the values of other five trigonometric functions if tanx=−5/12, x lies in second quadrant.
Answer-
Given tanx=−5/12 and x is in Quadrant 2.
In Q2, sinx is positive, cosx is negative.
cotx=tanx1=−5/121=−512
1+tan2x=sec2x sec2x=1+(−5/12)2=1+25/144=169/144 secx=−1213 (since x is in Q2)
cosx=secx1=−13/121=−1312
We know tanx=cosxsinx, so sinx=tanx×cosx sinx=(−125)×(−1312)=135
cscx=sinx1=5/131=513
Question 6: Find the value of the trigonometric function sin765∘
Answer-
We can write 765∘ as n×360∘+θ. 765∘=2×360∘+45∘=720∘+45∘ sin(765∘)=sin(2×360∘+45∘)
Since sin(2nπ+θ)=sinθ, sin(765∘)=sin(45∘)=21
Question 7: Find the value of the trigonometric function csc(−1410∘)
Answer-
We know csc(−θ)=−csc(θ).
So, csc(−1410∘)=−csc(1410∘).
Now, we write 1410∘ as n×360∘+θ. 1410∘=3×360∘+330∘=1080∘+330∘ −csc(1410∘)=−csc(3×360∘+330∘)=−csc(330∘)
We can write csc(330∘) as csc(360∘−30∘).
In Q4, csc is negative, so csc(360∘−30∘)=−csc(30∘)=−2.
Therefore, −csc(330∘)=−(−2)=2.
Alternatively: 1410∘=4×360∘−30∘=1440∘−30∘ −csc(1410∘)=−csc(4×360∘−30∘)=−csc(−30∘) =−(−csc(30∘))=csc(30∘)=2.
So, csc(−1410∘)=2.
Question 8: Find the value of the trigonometric function tan(19π/3)
Answer-
We can write 319π as 6π+3π=3×2π+3π. tan(19π/3)=tan(6π+π/3)
Since tan(2nπ+θ)=tanθ, tan(19π/3)=tan(π/3)=3
Question 9: Find the value of the trigonometric function sin(−11π/3)
Answer-
We know sin(−θ)=−sin(θ).
So, sin(−11π/3)=−sin(11π/3).
We can write 311π as 4π−3π=2×2π−3π. −sin(11π/3)=−sin(4π−π/3)
Since sin(2nπ+θ)=sinθ, sin(4π−π/3)=sin(−π/3). sin(−π/3)=−sin(π/3)=−23.
So, sin(−11π/3)=−(−23)=23.
Question 10: Find the value of the trigonometric function cot(−15π/4)
Answer-
We know cot(−θ)=−cot(θ).
So, cot(−15π/4)=−cot(15π/4).
We can write 415π as 4π−4π=2×2π−4π. −cot(15π/4)=−cot(4π−π/4)
Since cot(2nπ+θ)=cotθ, cot(4π−π/4)=cot(−π/4). cot(−π/4)=−cot(π/4)=−1.
So, cot(−15π/4)=−(−1)=1.
Exercise 3.3
Question 1: Prove that sin26π+cos23π−tan24π=−21
Answer-
We take the Left Hand Side (LHS):
LHS = sin26π+cos23π−tan24π
We know the values: sin(π/6)=1/2 cos(π/3)=1/2 tan(π/4)=1
Substitute these values into the LHS:
LHS = (1/2)2+(1/2)2−(1)2
LHS = 1/4+1/4−1
LHS = 1/2−1=−1/2
LHS = RHS (Right Hand Side)
Hence, proved.
Question 2: Prove that 2sin26π+csc267πcos23π=23
Answer-
LHS = 2sin26π+csc267πcos23π
First, find the value of csc(7π/6): csc(7π/6)=csc(π+π/6)
Since csc is negative in Quadrant 3, csc(π+θ)=−csc(θ). csc(7π/6)=−csc(π/6)=−2
Now substitute all values into the LHS: sin(π/6)=1/2 cos(π/3)=1/2 csc(7π/6)=−2
LHS = 2(1/2)2+(−2)2(1/2)2
LHS = 2(1/4)+(4)(1/4)
LHS = 1/2+1=3/2
LHS = RHS
Hence, proved.
Question 3: Prove that cot26π+csc65π+3tan26π=6
Answer-
LHS = cot26π+csc65π+3tan26π
First, find the value of csc(5π/6): csc(5π/6)=csc(π−π/6)
Since csc is positive in Quadrant 2, csc(π−θ)=csc(θ). csc(5π/6)=csc(π/6)=2
Now substitute all values into the LHS: cot(π/6)=3 tan(π/6)=1/3 csc(5π/6)=2
LHS = (3)2+2+3(1/3)2
LHS = 3+2+3(1/3)
LHS = 3+2+1=6
LHS = RHS
Hence, proved.
Question 4: Prove that 2sin243π+2cos24π+2sec23π=10
Answer-
LHS = 2sin243π+2cos24π+2sec23π
First, find the value of sin(3π/4): sin(3π/4)=sin(π−π/4)
Since sin is positive in Quadrant 2, sin(π−θ)=sin(θ). sin(3π/4)=sin(π/4)=1/2
Now substitute all values into the LHS: sin(3π/4)=1/2 cos(π/4)=1/2 sec(π/3)=2
LHS = 2(1/2)2+2(1/2)2+2(2)2
LHS = 2(1/2)+2(1/2)+2(4)
LHS = 1+1+8=10
LHS = RHS
Hence, proved.
Question 5: Find the value of: (i) sin75∘ (ii) tan15∘
Answer-
(i) sin75∘
We can write 75∘=45∘+30∘ sin(75∘)=sin(45∘+30∘)
Using the formula sin(A+B)=sinAcosB+cosAsinB: sin(75∘)=sin(45∘)cos(30∘)+cos(45∘)sin(30∘) sin(75∘)=(1/2)(3/2)+(1/2)(1/2) sin(75∘)=223+221=223+1
Rationalizing the denominator: 22(3+1)×22=46+2 sin75∘=46+2
(ii) tan15∘
We can write 15∘=45∘−30∘ tan(15∘)=tan(45∘−30∘)
Using the formula tan(A−B)=1+tanAtanBtanA−tanB: tan(15∘)=1+tan45∘tan30∘tan45∘−tan30∘ tan(15∘)=1+1⋅(1/3)1−1/3=(3+1)/3(3−1)/3 tan(15∘)=3+13−1
Rationalizing the denominator: tan(15∘)=3+13−1×3−13−1=(3)2−12(3−1)2 tan(15∘)=3−13−23+1=24−23=2−3 tan15∘=2−3
Question 6: Prove that cos(4π−x)cos(4π−y)−sin(4π−x)sin(4π−y)=sin(x+y)
Answer-
LHS = cos(4π−x)cos(4π−y)−sin(4π−x)sin(4π−y)
This expression is in the form cosAcosB−sinAsinB, which is equal to cos(A+B).
Let A=(4π−x) and B=(4π−y).
LHS = cos(A+B)=cos[(4π−x)+(4π−y)]
LHS = cos(4π+4π−x−y)=cos(42π−(x+y))
LHS = cos(2π−(x+y))
Using the identity cos(π/2−θ)=sinθ:
LHS = sin(x+y)
LHS = RHS
Hence, proved.
Question 7: Prove that tan(4π−x)tan(4π+x)=(1−tanx1+tanx)2
Answer-
LHS = tan(4π−x)tan(4π+x)
We use the sum and difference formulas for tan:
Numerator: tan(4π+x)=1−tan(π/4)tanxtan(π/4)+tanx=1−tanx1+tanx
Denominator: tan(4π−x)=1+tan(π/4)tanxtan(π/4)−tanx=1+tanx1−tanx
Now, substitute these back into the LHS:
LHS = (1−tanx)/(1+tanx)(1+tanx)/(1−tanx)
LHS = 1−tanx1+tanx×1−tanx1+tanx
LHS = (1−tanx)2(1+tanx)2=(1−tanx1+tanx)2
LHS = RHS
Hence, proved.
Question 8: Prove that sin(π−x)cos(2π+x)cos(π+x)cos(−x)=cot2x
Answer-
LHS = sin(π−x)cos(2π+x)cos(π+x)cos(−x)
We simplify each term using allied angle identities: cos(π+x)=−cosx (Q3, cos is negative) cos(−x)=cosx (cos is an even function) sin(π−x)=sinx (Q2, sin is positive) cos(2π+x)=−sinx (Q2, cos is negative, and cos changes to sin)
Substitute these into the LHS:
LHS = (sinx)(−sinx)(−cosx)(cosx)
LHS = −sin2x−cos2x=sin2xcos2x
LHS = cot2x
LHS = RHS
Hence, proved.
Question 9: Prove that cos(23π+x)cos(2π+x)[cot(23π−x)+cot(2π+x)]=1
Answer-
LHS = cos(23π+x)cos(2π+x)[cot(23π−x)+cot(2π+x)]
Simplify each term: cos(23π+x)=sinx (Q4, cos is positive, cos changes to sin) cos(2π+x)=cosx (Q1, period of 2π) cot(23π−x)=tanx (Q3, cot is positive, cot changes to tan) cot(2π+x)=cotx (Q1, period of 2π)
Substitute these into the LHS:
LHS = (sinx)(cosx)[tanx+cotx]
Now, express tanx and cotx in terms of sinx and cosx:
LHS = (sinx)(cosx)[cosxsinx+sinxcosx]
LHS = (sinx)(cosx)[sinxcosxsin2x+cos2x]
Using the identity sin2x+cos2x=1:
LHS = (sinx)(cosx)[sinxcosx1]
LHS = 1
LHS = RHS
Hence, proved.
Question 10: Prove that sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx
Answer-
LHS = sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x
Rearranging the terms:
LHS = cos(n+2)xcos(n+1)x+sin(n+2)xsin(n+1)x
This expression is in the form cosAcosB+sinAsinB, which is equal to cos(A−B).
Let A=(n+2)x and B=(n+1)x.
LHS = cos(A−B)=cos[(n+2)x−(n+1)x]
LHS = cos((n+2−n−1)x)
LHS = cos(1⋅x)=cosx
LHS = RHS
Hence, proved.
Question 11: Prove that cos(43π+x)−cos(43π−x)=−2sinx
Answer-
LHS = cos(43π+x)−cos(43π−x)
We use the sum-to-product formula cosA−cosB=−2sin(2A+B)sin(2A−B).
Let A=43π+x and B=43π−x. 2A+B=2(43π+x)+(43π−x)=22⋅(3π/4)=43π 2A−B=2(43π+x)−(43π−x)=22x=x
Substitute these into the formula:
LHS = −2sin(43π)sin(x)
We need to find sin(3π/4): sin(3π/4)=sin(π−π/4)=sin(π/4)=21
LHS = −2(21)sin(x)
LHS = −22sin(x)=−2sinx
LHS = RHS
Hence, proved.
Question 12: Prove that sin26x−sin24x=sin2xsin10x
Answer-
LHS = sin26x−sin24x
We use the identity sin2A−sin2B=sin(A+B)sin(A−B).
Let A=6x and B=4x.
LHS = sin(6x+4x)sin(6x−4x)
LHS = sin(10x)sin(2x)
LHS = sin2xsin10x
LHS = RHS
Hence, proved.
Question 13: Prove that cos22x−cos26x=sin4xsin8x
Answer-
LHS = cos22x−cos26x
We use the identity cos2A=1−sin2A.
LHS = (1−sin22x)−(1−sin26x)
LHS = 1−sin22x−1+sin26x
LHS = sin26x−sin22x
Now we use the identity sin2A−sin2B=sin(A+B)sin(A−B).
Let A=6x and B=2x.
LHS = sin(6x+2x)sin(6x−2x)
LHS = sin(8x)sin(4x)
LHS = sin4xsin8x
LHS = RHS
Hence, proved.
Question 14: Prove that sin2x+2sin4x+sin6x=4cos2xsin4x
Answer-
LHS = sin2x+2sin4x+sin6x
Group the outer terms:
LHS = (sin6x+sin2x)+2sin4x
Use the sum-to-product formula sinA+sinB=2sin(2A+B)cos(2A−B).
LHS = [2sin(26x+2x)cos(26x−2x)]+2sin4x
LHS = 2sin(4x)cos(2x)+2sin4x
Factor out 2sin4x:
LHS = 2sin4x(cos2x+1)
Use the double-angle identity cos2x=2cos2x−1. cos2x+1=(2cos2x−1)+1=2cos2x
Substitute this back:
LHS = 2sin4x(2cos2x)
LHS = 4cos2xsin4x
LHS = RHS
Hence, proved.
Question 15: Prove that cot4x(sin5x+sin3x)=cotx(sin5x−sin3x)
Answer-
We will simplify both LHS and RHS.
LHS = cot4x(sin5x+sin3x)
Use sinA+sinB=2sin(2A+B)cos(2A−B):
LHS = sin4xcos4x[2sin(25x+3x)cos(25x−3x)]
LHS = sin4xcos4x[2sin(4x)cos(x)]
LHS = 2cos4xcosx
Since LHS = 2cos4xcosx and RHS = 2cos4xcosx,
LHS = RHS
Hence, proved.
Question 16: Prove that sin17x−sin3xcos9x−cos5x=−cos10xsin2x
Answer-
LHS = sin17x−sin3xcos9x−cos5x
Use sum-to-product formulas: cosA−cosB=−2sin(2A+B)sin(2A−B) sinA−sinB=2cos(2A+B)sin(2A−B)
Numerator: cos9x−cos5x=−2sin(29x+5x)sin(29x−5x)=−2sin(7x)sin(2x)
Denominator: sin17x−sin3x=2cos(217x+3x)sin(217x−3x)=2cos(10x)sin(7x)
Substitute back into the LHS:
LHS = 2cos(10x)sin(7x)−2sin(7x)sin(2x)
Cancel the 2 and sin(7x) terms:
LHS = cos(10x)−sin(2x)
LHS = RHS
Hence, proved.
Question 17: Prove that cos5x+cos3xsin5x+sin3x=tan4x
Answer-
LHS = cos5x+cos3xsin5x+sin3x
Use sum-to-product formulas: sinA+sinB=2sin(2A+B)cos(2A−B) cosA+cosB=2cos(2A+B)cos(2A−B)
Numerator: sin5x+sin3x=2sin(25x+3x)cos(25x−3x)=2sin(4x)cos(x)
Denominator: cos5x+cos3x=2cos(25x+3x)cos(25x−3x)=2cos(4x)cos(x)
Substitute back into the LHS:
LHS = 2cos(4x)cos(x)2sin(4x)cos(x)
Cancel the 2 and cos(x) terms:
LHS = cos(4x)sin(4x)=tan4x
LHS = RHS
Hence, proved.
Question 18: Prove that cosx+cosysinx−siny=tan(2x−y)
Answer-
LHS = cosx+cosysinx−siny
Use sum-to-product formulas: sinA−sinB=2cos(2A+B)sin(2A−B) cosA+cosB=2cos(2A+B)cos(2A−B)
Numerator: sinx−siny=2cos(2x+y)sin(2x−y)
Denominator: cosx+cosy=2cos(2x+y)cos(2x−y)
Substitute back into the LHS:
LHS = 2cos(2x+y)cos(2x−y)2cos(2x+y)sin(2x−y)
Cancel the 2 and cos(2x+y) terms:
LHS = cos(2x−y)sin(2x−y)=tan(2x−y)
LHS = RHS
Hence, proved.
Question 19: Prove that cosx+cos3xsinx+sin3x=tan2x
Answer-
LHS = cosx+cos3xsinx+sin3x=cos3x+cosxsin3x+sinx
Use sum-to-product formulas: sinA+sinB=2sin(2A+B)cos(2A−B) cosA+cosB=2cos(2A+B)cos(2A−B)
Numerator: sin3x+sinx=2sin(23x+x)cos(23x−x)=2sin(2x)cos(x)
Denominator: cos3x+cosx=2cos(23x+x)cos(23x−x)=2cos(2x)cos(x)
Substitute back into the LHS:
LHS = 2cos(2x)cos(x)2sin(2x)cos(x)
Cancel the 2 and cos(x) terms:
LHS = cos(2x)sin(2x)=tan2x
LHS = RHS
Hence, proved.
Question 20: Prove that sin2x−cos2xsinx−sin3x=2sinx
Answer-
LHS = sin2x−cos2xsinx−sin3x
Numerator: Use sinA−sinB=2cos(2A+B)sin(2A−B) sinx−sin3x=2cos(2x+3x)sin(2x−3x) =2cos(2x)sin(−x)
Since sin(−x)=−sinx: =−2cos(2x)sin(x)
Denominator: sin2x−cos2x=−(cos2x−sin2x)
Using the identity cos2x=cos2x−sin2x: =−cos(2x)
Substitute back into the LHS:
LHS = −cos(2x)−2cos(2x)sin(x)
Cancel the −cos(2x) terms:
LHS = 2sinx
LHS = RHS
Hence, proved.
Question 21: Prove that sin4x+sin3x+sin2xcos4x+cos3x+cos2x=cot3x
Answer-
LHS = sin4x+sin3x+sin2xcos4x+cos3x+cos2x
Group the outer terms in the numerator and denominator:
LHS = (sin4x+sin2x)+sin3x(cos4x+cos2x)+cos3x
Use sum-to-product formulas: cosA+cosB=2cos(2A+B)cos(2A−B) sinA+sinB=2sin(2A+B)cos(2A−B)
Numerator: (cos4x+cos2x)+cos3x=[2cos(24x+2x)cos(24x−2x)]+cos3x =2cos(3x)cos(x)+cos3x
Denominator: (sin4x+sin2x)+sin3x=[2sin(24x+2x)cos(24x−2x)]+sin3x =2sin(3x)cos(x)+sin3x
Substitute back into the LHS:
LHS = 2sin(3x)cos(x)+sin3x2cos(3x)cos(x)+cos3x
Factor out cos3x from the numerator and sin3x from the denominator:
LHS = sin3x(2cosx+1)cos3x(2cosx+1)
Cancel the (2cosx+1) term:
LHS = sin3xcos3x=cot3x
LHS = RHS
Hence, proved.
Question 22: Prove that cotxcot2x−cot2xcot3x−cot3xcotx=1
Answer-
We start with the relationship 3x=2x+x.
Apply cot to both sides: cot(3x)=cot(2x+x)
Use the formula cot(A+B)=cotB+cotAcotAcotB−1: cot(3x)=cotx+cot2xcot2xcotx−1
Cross-multiply: cot(3x)(cotx+cot2x)=cot2xcotx−1 cot3xcotx+cot3xcot2x=cot2xcotx−1
Rearrange the terms to match the required expression: 1=cot2xcotx−cot3xcotx−cot3xcot2x 1=cotxcot2x−cot2xcot3x−cot3xcotx
Hence, proved.
Question 23: Prove that tan4x=1−6tan2x+tan4x4tanx(1−tan2x)
Answer-
LHS = tan4x=tan(2⋅2x)
Use the double-angle formula tan2A=1−tan2A2tanA.
First, let A=2x: tan4x=1−tan2(2x)2tan2x
Now, use the same formula again for tan2x: tan2x=1−tan2x2tanx
Substitute this into the expression for tan4x:
Numerator: 2tan2x=2(1−tan2x2tanx)=1−tan2x4tanx
Denominator: 1−tan2(2x)=1−(1−tan2x2tanx)2 =1−(1−tan2x)24tan2x =(1−tan2x)2(1−tan2x)2−4tan2x =(1−tan2x)2(1−2tan2x+tan4x)−4tan2x =(1−tan2x)21−6tan2x+tan4x
Now, combine the numerator and denominator for tan4x:
LHS = (1−tan2x)21−6tan2x+tan4x1−tan2x4tanx
LHS = 1−tan2x4tanx×1−6tan2x+tan4x(1−tan2x)2
Cancel one (1−tan2x) term:
LHS = 1−6tan2x+tan4x4tanx(1−tan2x)
LHS = RHS
Hence, proved.
Question 24: Prove that cos4x=1−8sin2xcos2x
Answer-
LHS = cos4x=cos(2⋅2x)
Use the double-angle formula cos2A=1−2sin2A.
Let A=2x:
LHS = 1−2sin2(2x)
LHS = 1−2(sin2x)2
Now use the double-angle formula sin2x=2sinxcosx:
LHS = 1−2(2sinxcosx)2
LHS = 1−2(4sin2xcos2x)
LHS = 1−8sin2xcos2x
LHS = RHS
Hence, proved.
Question 25: Prove that cos6x=32cos6x−48cos4x+18cos2x−1
Answer-
LHS = cos6x=cos(3⋅2x)
Use the triple-angle formula cos3A=4cos3A−3cosA.
Let A=2x:
LHS = 4cos3(2x)−3cos(2x)
Now use the double-angle formula cos2x=2cos2x−1:
LHS = 4(2cos2x−1)3−3(2cos2x−1)
Expand (2cos2x−1)3 using (a−b)3=a3−3a2b+3ab2−b3: (2cos2x)3−3(2cos2x)2(1)+3(2cos2x)(1)2−(1)3 =8cos6x−3(4cos4x)+6cos2x−1 =8cos6x−12cos4x+6cos2x−1
Now substitute this back into the expression for LHS:
LHS = 4(8cos6x−12cos4x+6cos2x−1)−3(2cos2x−1)
LHS = (32cos6x−48cos4x+24cos2x−4)−(6cos2x−3)
LHS = 32cos6x−48cos4x+24cos2x−4−6cos2x+3
LHS = 32cos6x−48cos4x+18cos2x−1
LHS = RHS
Hence, proved.
Miscellaneous Exercise on Chapter 3
Question 1: Prove that 2cos13πcos139π+cos133π+cos135π=0
Answer-
LHS = 2cos13πcos139π+cos133π+cos135π
Use the product-to-sum formula 2cosAcosB=cos(A+B)+cos(A−B) on the first term. 2cos13πcos139π=cos(13π+139π)+cos(13π−139π) =cos(1310π)+cos(−138π)
Since cos(−θ)=cosθ: =cos(1310π)+cos(138π)
Substitute this back into the LHS:
LHS = cos(1310π)+cos(138π)+cos133π+cos135π
We can write 10π/13 as π−3π/13 and 8π/13 as π−5π/13. cos(10π/13)=cos(π−3π/13)=−cos(3π/13) cos(8π/13)=cos(π−5π/13)=−cos(5π/13)
Substitute these into the LHS:
LHS = (−cos133π)+(−cos135π)+cos133π+cos135π
LHS = 0
LHS = RHS
Hence, proved.
Question 2: Prove that (sin3x+sinx)sinx+(cos3x−cosx)cosx=0
Question 3: Prove that (cosx+cosy)2+(sinx−siny)2=4cos2(2x+y)
Answer-
LHS = (cosx+cosy)2+(sinx−siny)2
Use sum-to-product formulas: cosx+cosy=2cos(2x+y)cos(2x−y) sinx−siny=2cos(2x+y)sin(2x−y)
Substitute these into the LHS:
LHS = [2cos(2x+y)cos(2x−y)]2+[2cos(2x+y)sin(2x−y)]2
LHS = 4cos2(2x+y)cos2(2x−y)+4cos2(2x+y)sin2(2x−y)
Factor out 4cos2(2x+y):
LHS = 4cos2(2x+y)[cos2(2x−y)+sin2(2x−y)]
Using the identity sin2θ+cos2θ=1:
LHS = 4cos2(2x+y)[1]
LHS = 4cos2(2x+y)
LHS = RHS
Hence, proved.
Question 4: Prove that (cosx−cosy)2+(sinx−siny)2=4sin2(2x−y)
Answer-
LHS = (cosx−cosy)2+(sinx−siny)2
Use sum-to-product formulas: cosx−cosy=−2sin(2x+y)sin(2x−y) sinx−siny=2cos(2x+y)sin(2x−y)
Substitute these into the LHS:
LHS = [−2sin(2x+y)sin(2x−y)]2+[2cos(2x+y)sin(2x−y)]2
LHS = 4sin2(2x+y)sin2(2x−y)+4cos2(2x+y)sin2(2x−y)
Factor out 4sin2(2x−y):
LHS = 4sin2(2x−y)[sin2(2x+y)+cos2(2x+y)]
Using the identity sin2θ+cos2θ=1:
LHS = 4sin2(2x−y)[1]
LHS = 4sin2(2x−y)
LHS = RHS
Hence, proved.
Question 5: Prove that sinx+sin3x+sin5x+sin7x=4cosxcos2xsin4x
Answer-
LHS = sinx+sin3x+sin5x+sin7x
Group terms:
LHS = (sin7x+sinx)+(sin5x+sin3x)
Use sinA+sinB=2sin(2A+B)cos(2A−B): (sin7x+sinx)=2sin(27x+x)cos(27x−x)=2sin(4x)cos(3x) (sin5x+sin3x)=2sin(25x+3x)cos(25x−3x)=2sin(4x)cos(x)
Substitute back into the LHS:
LHS = 2sin(4x)cos(3x)+2sin(4x)cos(x)
Factor out 2sin(4x):
LHS = 2sin(4x)[cos(3x)+cos(x)]
Now use cosA+cosB=2cos(2A+B)cos(2A−B): cos(3x)+cos(x)=2cos(23x+x)cos(23x−x)=2cos(2x)cos(x)
Substitute this back:
LHS = 2sin(4x)[2cos(2x)cos(x)]
LHS = 4sin(4x)cos(2x)cos(x)
LHS = 4cosxcos2xsin4x
LHS = RHS
Hence, proved.
Question 6: Prove that (cos7x+cos5x)+(cos9x+cos3x)(sin7x+sin5x)+(sin9x+sin3x)=tan6x
Answer-
LHS = (cos7x+cos5x)+(cos9x+cos3x)(sin7x+sin5x)+(sin9x+sin3x)
Apply sum-to-product formulas to all four pairs: sin7x+sin5x=2sin(6x)cos(x) sin9x+sin3x=2sin(6x)cos(3x) cos7x+cos5x=2cos(6x)cos(x) cos9x+cos3x=2cos(6x)cos(3x)
Substitute these into the LHS:
LHS = 2cos(6x)cos(x)+2cos(6x)cos(3x)2sin(6x)cos(x)+2sin(6x)cos(3x)
Factor out 2sin(6x) from the numerator and 2cos(6x) from the denominator:
LHS = 2cos(6x)(cosx+cos3x)2sin(6x)(cosx+cos3x)
Cancel the 2 and (cosx+cos3x) terms:
LHS = cos(6x)sin(6x)=tan6x
LHS = RHS
Hence, proved.
Question 7: Prove that sin3x+sin2x−sinx=4sinxcos(2x)cos(23x)
Answer-
LHS = sin3x+sin2x−sinx
Group the outer terms:
LHS = (sin3x−sinx)+sin2x
Use sinA−sinB=2cos(2A+B)sin(2A−B): sin3x−sinx=2cos(23x+x)sin(23x−x)=2cos(2x)sin(x)
Substitute back, and use sin2x=2sinxcosx:
LHS = 2cos(2x)sin(x)+2sinxcosx
Factor out 2sinx:
LHS = 2sinx(cos2x+cosx)
Now use cosA+cosB=2cos(2A+B)cos(2A−B): cos2x+cosx=2cos(22x+x)cos(22x−x)=2cos(23x)cos(2x)
Substitute this back:
LHS = 2sinx[2cos(23x)cos(2x)]
LHS = 4sinxcos(2x)cos(23x)
LHS = RHS
Hence, proved.
Question 8: Find sin(x/2), cos(x/2) and tan(x/2) if tanx=−4/3, x lies in quadrant II.
Answer-
Given tanx=−4/3 and x is in Quadrant II.
This means 2π<x<π.
Dividing by 2, we get 4π<2x<2π.
This means x/2 lies in Quadrant I. In Q1, sin(x/2), cos(x/2), and tan(x/2) are all positive.
We know the formula tanx=1−tan2(x/2)2tan(x/2).
Let t=tan(x/2). −4/3=1−t22t −4(1−t2)=3(2t) −4+4t2=6t 4t2−6t−4=0 2t2−3t−2=0
Factor the quadratic equation: (2t+1)(t−2)=0
So, t=−1/2 or t=2.
Since x/2 is in Q1, tan(x/2) must be positive.
Therefore, tan(x/2)=2.
Now we find sin(x/2) and cos(x/2) using tan(x/2)=2/1 (Opposite/Adjacent).
Hypotenuse = 22+12=5.
Since x/2 is in Q1: sin(x/2)=HypotenuseOpposite=52=525 cos(x/2)=HypotenuseAdjacent=51=55
Final Answer: sin(x/2)=52 cos(x/2)=51 tan(x/2)=2
Question 9: Find sin(x/2), cos(x/2) and tan(x/2) if cosx=−1/3, x lies in quadrant III.
Answer-
Given cosx=−1/3 and x is in Quadrant III.
This means π<x<23π.
Dividing by 2, we get 2π<2x<43π.
This means x/2 lies in Quadrant II. In Q2, sin(x/2) is positive, cos(x/2) is negative, and tan(x/2) is negative.
We use the half-angle identities:
sin2(x/2)=21−cosx sin2(x/2)=21−(−1/3)=21+1/3=24/3=64=32
Since x/2 is in Q2, sin(x/2) is positive. sin(x/2)=32=32=36
cos2(x/2)=21+cosx cos2(x/2)=21+(−1/3)=21−1/3=22/3=31
Since x/2 is in Q2, cos(x/2) is negative. cos(x/2)=−31=−31=−33
Final Answer: sin(x/2)=36 cos(x/2)=−33 tan(x/2)=−2
Question 10: Find sin(x/2), cos(x/2) and tan(x/2) if sinx=1/4, x lies in quadrant II.
Answer-
Given sinx=1/4 and x is in Quadrant II.
This means 2π<x<π.
Dividing by 2, we get 4π<2x<2π.
This means x/2 lies in Quadrant I. In Q1, all trigonometric functions are positive.
First, we need to find cosx. Since x is in Q2, cosx is negative. cos2x=1−sin2x=1−(1/4)2=1−1/16=15/16 cosx=−1615=−415
Now we use the half-angle identities:
sin2(x/2)=21−cosx sin2(x/2)=21−(−15/4)=21+15/4=2(4+15)/4=84+15
Since x/2 is in Q1, sin(x/2) is positive. sin(x/2)=84+15=84+15=224+15
(To simplify 8+215=(5+3)2=5+3) sin(x/2)=48+215=45+3
cos2(x/2)=21+cosx cos2(x/2)=21+(−15/4)=21−15/4=2(4−15)/4=84−15
Since x/2 is in Q1, cos(x/2) is positive. cos(x/2)=84−15=84−15=224−15
(To simplify 8−215=(5−3)2=5−3) cos(x/2)=48−215=45−3